

Design of Robust CAN-FD Networks

An automated Model based Design Flow

Federico Pereira

Design flow introduction

Topology simulation

Validation criteria

Need for automatization

Conclusion

www.cs-group.de communication & systems group

Design flow introduction

Topology simulation

Validation criteria

Need for automatization

Conclusion

www.cs-group.de communication & systems group

C & S

. 🏓 .

Why should I simulate?

- Constant increase of quality and performance in todays requirements within in-vehicle networks (IVN) systems
- Quality assurance
- Further analysis compared to laboratory test
- Total cost reduction

We consider simulation as the most important phase in validating a modern topology

Design flow introduction (2/2)

3 main steps are distinguished in this kind of design flow:

- Topology simulation
 - Virtual network prototype
- Laboratory measurements
 - Real network test
- Verification
 - Comparison between the virtual measurements and

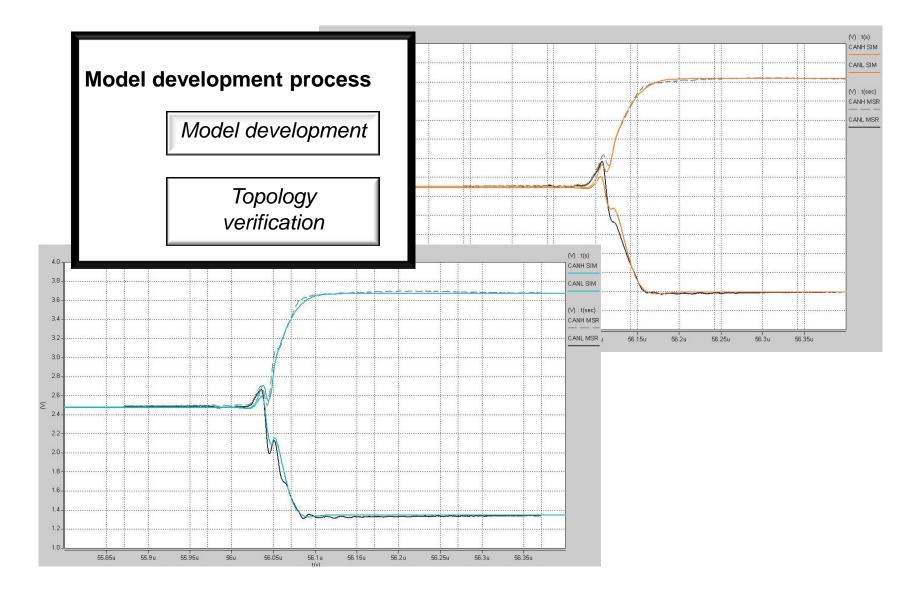
real measurements

Design flow introduction

Topology simulation

Validation criteria

Need for automatization

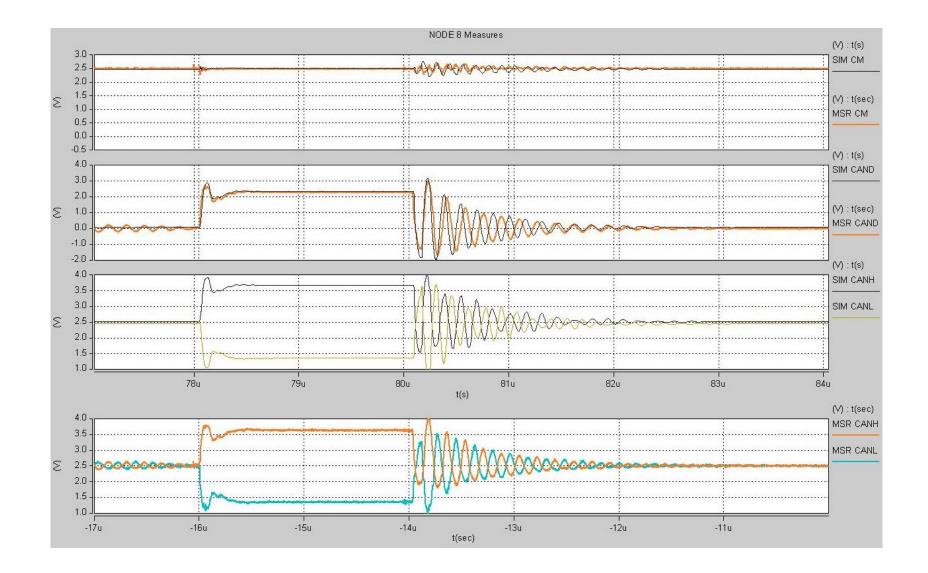

Conclusion

www.cs-group.de communication & systems group

C & S

. 🏓 . .

Model development process			
	Model development		
	Topology verification		

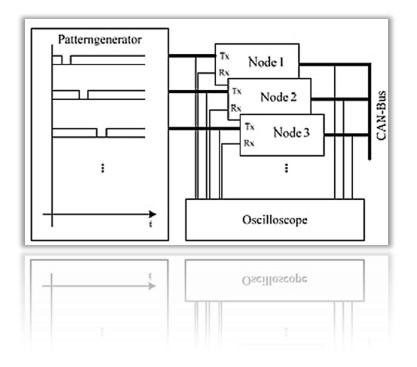


www.cs-group.de communication & systems group

8

Model development process	
Model development	
Topology verification	#8
	8,1m
	(#7) 7,1m (#1) 1,2m (#2) (#2)
	(#6)-5,9m-3,1m-(#3)
	(#5) ^{5,2m} 4,5m
	4,511

www.cs-group.de communication & systems group


www.cs-group.de communication & systems group

10

C & S

Round robin communication

 [Pattern generator] creates a digital input signal to the TXD pin of each transceiver with the required data rate

• • • C & S

Pattern applied to each node

A typical scenario is used when 5 dominant bits are followed by a unique recessive bit

This combination assures the worst condition after charging/discharging the capacitances

Design flow introduction

Topology simulation

Validation criteria

Need for automatization

Conclusion

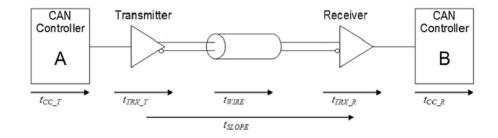
www.cs-group.de communication & systems group

C & S

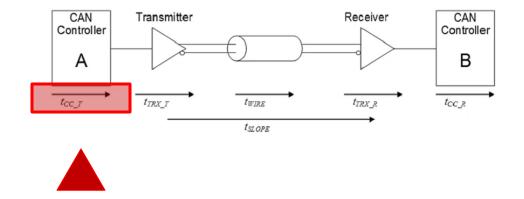
. 🏓 .

Clock tolerance

Though this rules concentrate on the bit timing only and do not involve topology effects, clock settings must respect the rules defined in *"Robustness of a CAN FD Bus System – About Oscillator Tolerance and Edge Deviations"* by Dr. Arthur Mutter

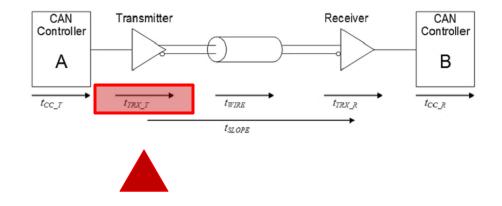

In special, we consider the clock tolerance as df:

$$(1-df) < \frac{f_{CAN}}{f_{nom}} < (1+df)$$

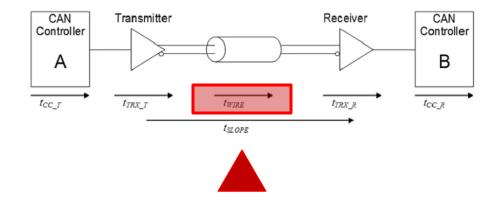

Safe sampling

Focused on the different propagation delays for a dominant to recessive edge and vice versa.

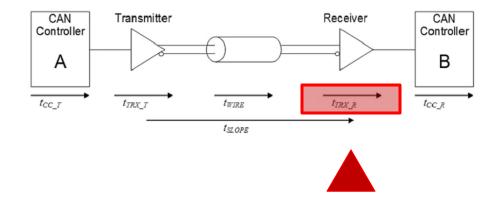
"The symmetry becomes more important with the increasing of the baud rate"



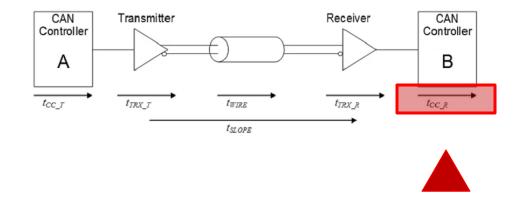
$-t_{CC_T}$ CAN controller delay on the transmitter side


www.cs-group.de communication & systems group

•••• C & S


 $-t_{CC_T}$ CAN controller delay on the transmitter side $-t_{TRX_T}$ Transceiver delay on the transmitter side

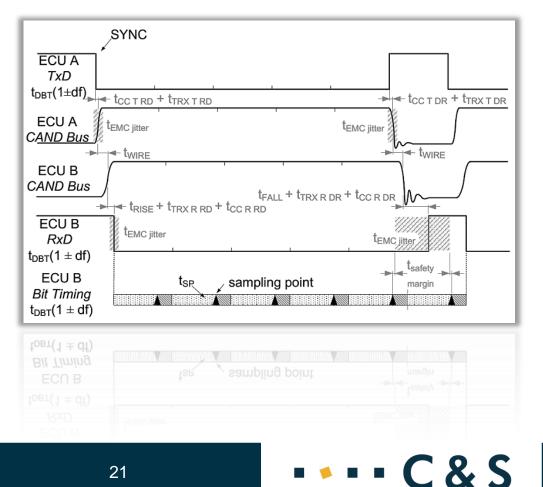
•••• C & S



- CAN controller delay on the transmitter side $-t_{CC_T}$
- Transceiver delay on the transmitter side $-t_{TRX T}$
- $-t_{WIRE}$
- Wire delays

C & S

- $-t_{CC_T}$ CAN controller delay on the transmitter side
- $-t_{TRX_T}$ Transceiver delay on the transmitter side
- $-t_{WIRE}$ Wire delays
- $-t_{TRX_R}$ Transceiver delay on the receiver side


- $-t_{CC_T}$ CAN controller delay on the transmitter side
- $-t_{TRX_T}$ Transceiver delay on the transmitter side
- $-t_{WIRE}$ Wire delays
- $-t_{TRX_R}$ Transceiver delay on the receiver side
- $-t_{CC_R}$ CAN controller delay on the receiver side

We consider t_{REC} as:

$$t_{REC} = t_{BIT_D} - \left(t_{TRX_T_{DR}} - t_{TRX_T_{RD}}\right) - \left(t_{TRX_R_{DR}} - t_{TRX_R_{RD}}\right) - \left(t_{DR} - t_{RD}\right)$$

- t_{REC} : Measured recessive time
- t_{BIT_p} : The time of a bit in data phase
- TRX: Transceiver delay
- **T**: Transmitting side
- **R**: Receiving side
- **DR**: Dominant to recessive edge $(t_{WIRE} + t_{FALL})$
- **RD**: Recessive to dominant edge

 $(t_{WIRE} + t_{RISE})$

A safety margin **before** and **after** the sampling point shall be considered

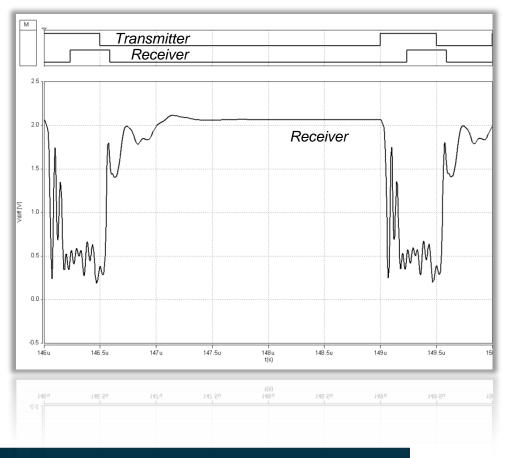
Sampling point - 1st Safety margin

Can be considered as the minimal distance between the sample point and the received edge at the beginning of the ideal bit and

Sampling point - 2nd Safety margin

Minimal distance between the received edge at the end of the ideal bit and the sample point

For Robustness, following inequalities must be satisfied


- Supposing that node A is **faster** than node B

 $t_{REC} < t_{BIT_D} + t_{SP(df_{B+})} + t_{CC} - t_{CLK} - t_{SM}$

- Supposing that node A is **slower** than node B $t_{REC} > t_{SP(df_{B-})} + t_{CC} + t_{CLK} + t_{SM}$
- t_{BIT_D} : The time of a bit in data phase
- t_{SM} : Safety margin including factors as EMC jitter
- t_{SP} : Sample point time within a bit
- $df_{B+/-}$: Index to indicate that the frequency is deviated due to clock deviation
- t_{CC} : Controller processing time
- t_{CLK} : Clock tolerance influence

Validation criteria – Example with t_{REC} too small

Bit time = 500 [ns]

www.cs-group.de communication & systems group

24

C & S

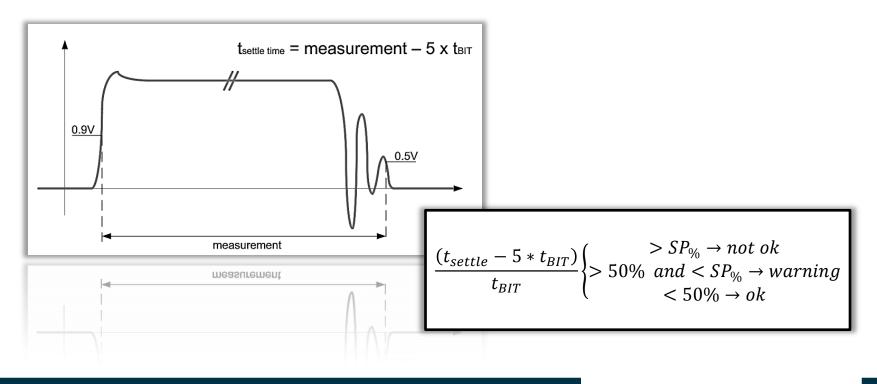
🔰 🔳 🔳

Validation criteria – Example with t_{REC} too small

Bit time = 500 [ns]

Measured value = 179 [ns], thus the minimum is not satisfied.

This is reported as a **FAIL** condition for this topology. The same is applied if the recessive time results are too large.

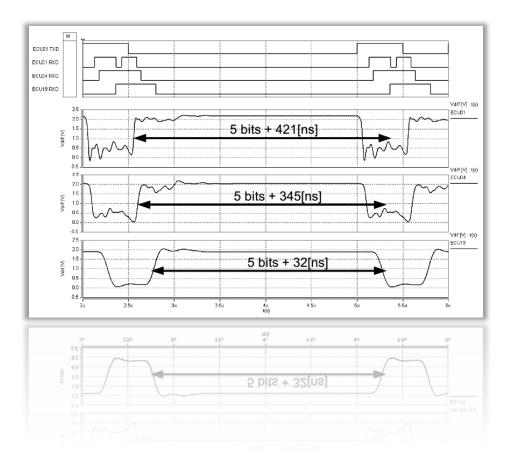

www.cs-group.de communication & systems group

C & S

Validation criteria – Settle time

Settle time can be measured in two different approaches

- Edge oriented measurement Falling time of the signal from the higher threshold to the lower threshold
- Bit oriented measurement Same as above but including the 5 dominant bits before changing to recessive state

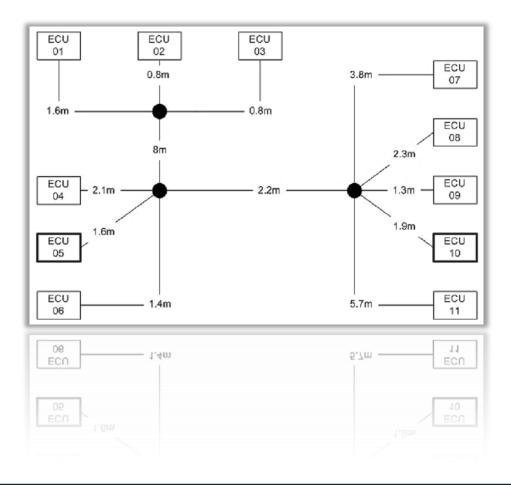

www.cs-group.de communication & systems group

Validation criteria – Settle time example

3 different verdicts are met in this example

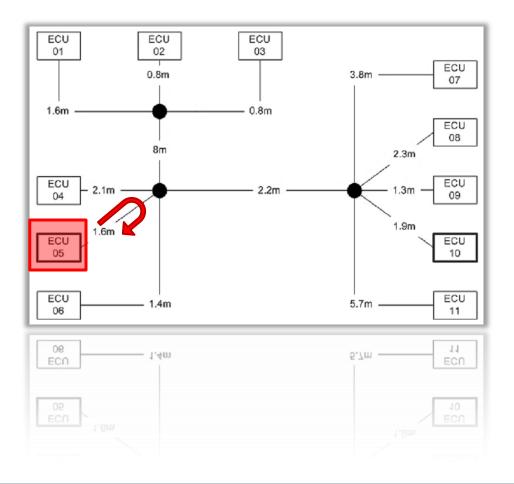
Table 1: Example of simulation outputs				
TX node	RX node	Measure	Limit	Verdict
ECU ₁	ECU₁	421 [ns]		FAIL
ECU ₁	ECU₄	345 [ns]	400 [ns]	WARN.
ECU ₁	ECU ₁₉	32 [ns]		PASS

ECU1	ECU ₁₉	32 [ns]		PASS
			400 [ns]	

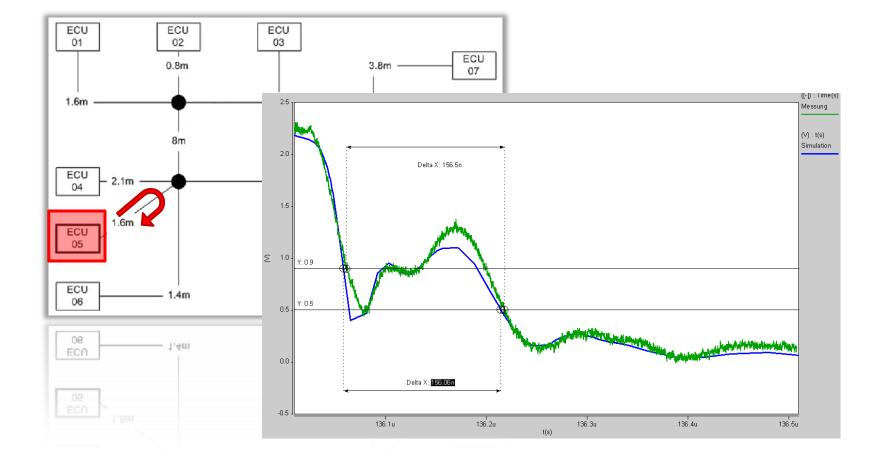


www.cs-group.de communication & systems group

Validation criteria – Confidence level (1/4)

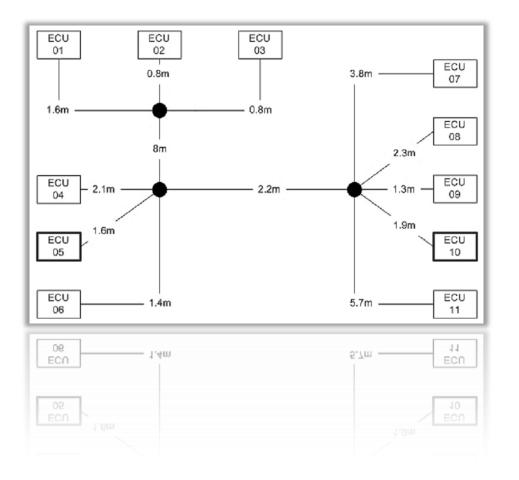

11 Nodes, 2 of them with low resistance termination

3 passive stars


www.cs-group.de communication & systems group

Settle time example

www.cs-group.de communication & systems group


Validation criteria – Confidence level (3/4)

www.cs-group.de communication & systems group

30

Validation criteria – Confidence level (4/4)

Baud rate [Mb/s]	Simulation	Measurement
0.5	PASS	PASS
1	PASS	PASS
2	PASS ¹	PASS ¹
3	FAIL	FAIL
4	FAIL	FAIL
5	FAIL	FAIL

5	FAIL	FAIL	
4	FAIL	FAIL	
1. On	1. Only with optional TDC		

•••C&S

www.cs-group.de communication & systems group

Design flow introduction

Topology simulation

Validation criteria

Need for automatization

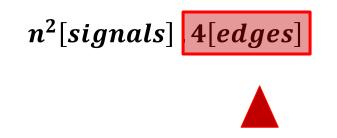
Conclusion

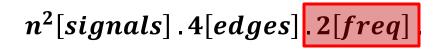
C & S

. 🚺 .

- Todays implementations demand automatization
- Each topology is evaluated independently
- Example:
 - -
 - -
 - -
 - -

•••• C & S


- Nowadays implementations demand automatization
- Each topology is evaluated independently
- Example:
 - 11 Nodes (n=11)
 - -
 - -



•••• C & S

- Nowadays implementations demand automatization
- Each topology is evaluated independently
- Example:
 - 11 Nodes (n=11)
 - 4 edges (Transmitter/Receiver, D2R and R2D)

- Nowadays implementations demand automatization
- Each topology is evaluated independently
- Example:
 - 11 Nodes (n=11)
 - 4 edges (Transmitter/Receiver, D2R and R2D)
 - Test at 2Mb/s and at 5Mb/s

Need for automatization

- Nowadays implementations demand automatization
- Each topology is evaluated independently
- Example:
 - 11 Nodes (n=11)
 - 4 edges (Transmitter/Receiver, D2R and R2D)
 - Test at 2Mb/s and at 5Mb/s
 - 3 Temperature conditions should be evaluated (high, room, low)

n²[signals].4[edges].2[freq].3[temp]

Need for automatization

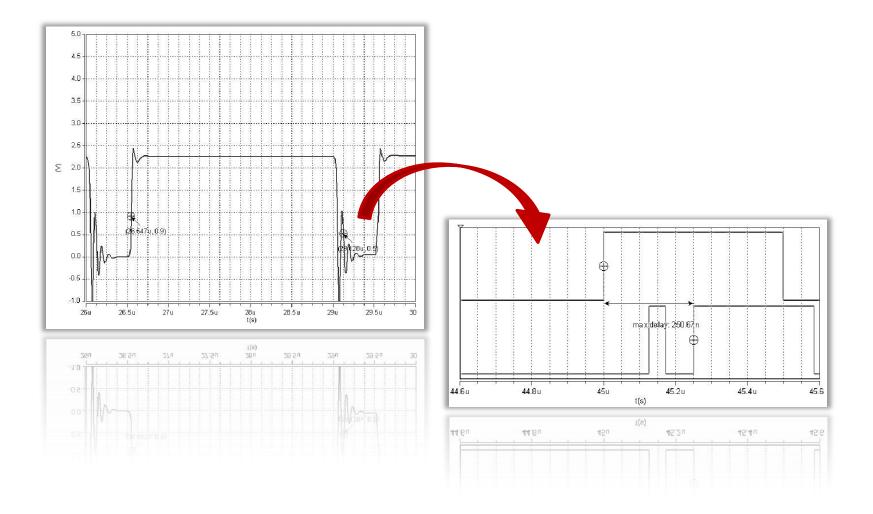
- Nowadays implementations demand automatization
- Each topology is evaluated independently
- Example:
 - 11 Nodes (n=11)
 - 4 edges (Transmitter/Receiver, D2R and R2D)
 - Test at 2Mb/s and at 5Mb/s
 - 3 Temperature conditions should be evaluated (high, room, low)

n²[signals].4[edges].2[freq].3[temp] = 2904 measurements!

- Nowadays implementations demand automatization
- Each topology is evaluated independently
- Example:
 - 11 Nodes (n=11)
 - 4 edges (Transmitter/Receiver, D2R and R2D)
 - Test at 2Mb/s and at 5Mb/s
 - 3 Temperature conditions should be evaluated (high, room, low)

 $n^{2}[signals].4[edges].2[freq].3[temp] = 2904$ measurements!

Keep counting, we must analyze also the arbitration phase...


- Nowadays implementations demand automatization
- Each topology is evaluated independently
- Example:
 - 11 Nodes (n=11)
 - 4 edges (Transmitter/Receiver, D2R and R2D)
 - Test at 2Mb/s and at 5Mb/s
 - 3 Temperature conditions should be evaluated (high, room, low)

 $n^{2}[signals]$. 4[edges]. 2[freq]. 3[temp] = 2904 measurements! Keep counting, we must analyze also the arbitration phase...

What about the human error? Automatization gives quality as well

Need for automatization

What happens after measurements? Should we adjust the topology?

www.cs-group.de communication & systems group

•••C&S

Design flow introduction

Topology simulation

Validation criteria

Need for automatization

Conclusion

www.cs-group.de communication & systems group

C & S

. 🏓 . .

CAN FD means higher data rate and even larger payloads

- •
- •
- •
- •

••••C&S

www.cs-group.de communication & systems group

•

CAN FD means higher data rate and even larger payloads

 Simulation nowadays is an excellent approach to overcome the design problems at an early stage of a vehicle development and/or newer versions of existent designs

••C&S

CAN FD means higher data rate and even larger payloads

- Simulation nowadays is an excellent approach to overcome the design problems at an early stage of a vehicle development and/or newer versions of existent designs
- The most important factor for higher frequencies is asymmetry and simulation is an excellent tool to evaluate it

CAN FD means higher data rate and even larger payloads

- Simulation nowadays is an excellent approach to overcome the design problems at an early stage of a vehicle development and/or newer versions of existent designs
- The most important factor for higher frequencies is asymmetry and simulation is an excellent tool to evaluate it
- Not only typical signals can be analyzed but those affected by tolerances and specified ranges as well

CAN FD means higher data rate and even larger payloads

- Simulation nowadays is an excellent approach to overcome the design problems at an early stage of a vehicle development and/or newer versions of existent designs
- The most important factor for higher frequencies is asymmetry and simulation is an excellent tool to evaluate it
- Not only typical signals can be analyzed but those affected by tolerances and specified ranges as well
- Automatization is what makes simulation an effective way in the Topology analysis

•

•••C&S

CAN FD means higher data rate and even larger payloads

- Simulation nowadays is an excellent approach to overcome the design problems at an early stage of a vehicle development and/or newer versions of existent designs
- The most important factor for higher frequencies is asymmetry and simulation is an excellent tool to evaluate it
- Not only typical signals can be analyzed but those affected by tolerances and specified ranges as well
- Automatization is what makes simulation an effective way in the Topology analysis
- Automatization + Simulation gives a extended focus to designers

•••C&S

Thank you for your attention!

••••C&S

www.cs-group.de communication & systems group

49

What can we test for you?

C & S group GmbH

Am Exer 19b 38302 Wolfenbüttel Germany Tel +49 53 31 · 90 555 0 Fax +49 53 31 · 90 555 110

info@cs-group.de www.cs-group.de **Federico Pereira** f.pereira@cs-group.de