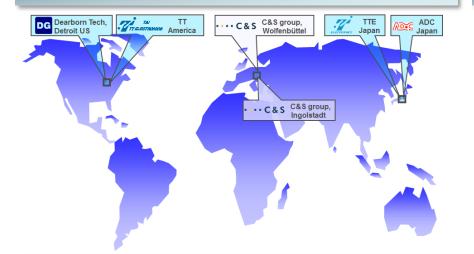


# Validation of CAN-FD IVN topologies


CiA CAN-FD Tech Day – Munich (DE), 19.03.2015

# Contents

- Welcome
- Motivation for using CAN-FD for IVN
- CAN-FD Challenge for the IVN topology designer
- Asymmetric delay the new validation criteria
- Validation criteria for CAN-FD IVN topologies
- Example for validation of a CAN-FD IVN topology
- Necessity of automation
- Summery

# **Testing Competence for more than 20 Years**

#### worldwide partnerships



#### longtime experience

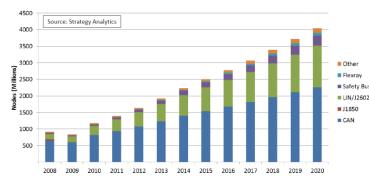
#### **C&S group GmbH**

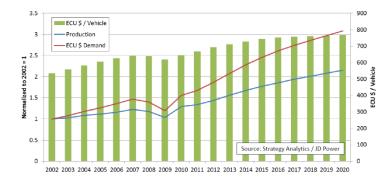
- Started in 1995 as part of University of Applied Sciences
- In November 2008 spin off into a private company
- High quality standard ISO/IEC 17025 accredited test laboratory
- Advanced high quality test & measurement equipment



- Worldwide accepted as test experts for networked systems
- Worldwide partnerships
- Customers: Leading automotive silicon vendors; Tier-1s and OEMs worldwide

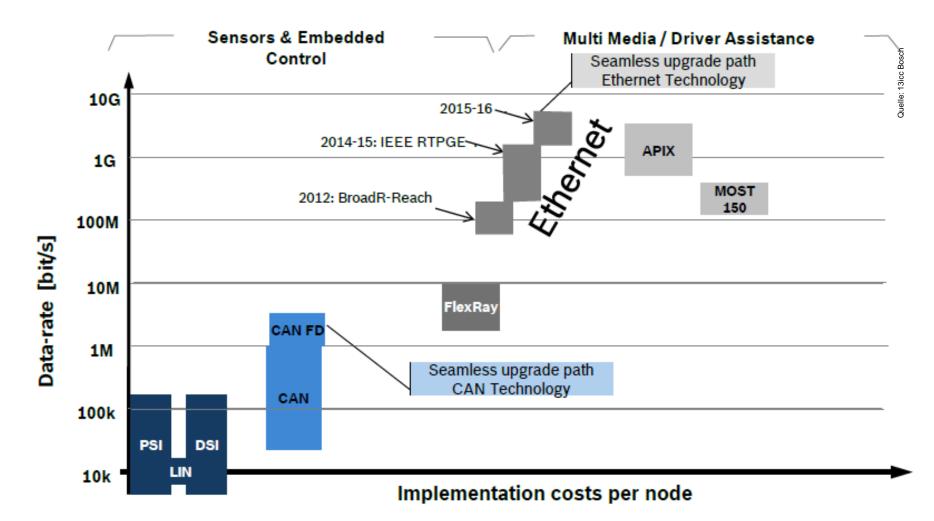
#### sustainable growth


communication & systems group


| 1995<br>CAN DL (ISO 16845)<br>CAN RI<br>CAN Robustness |                                                                          | 2002<br>WG Active Member<br>LIN DL/PL CT<br>1.3, 2.0, 2.1, 2.2 | <b>2004</b><br>WG Active Development Member<br>FlexRay PL CT for BD/AS<br>2.1A/B and 3.0.1  | 2010<br>Chairman SWITCHgroup<br>CT Specification ISO16845-2<br>OEM HW Requirements Spec   | 2012<br>Adopter Member<br>TC1 Contribution<br>Compliance & Interoperability Tests                 |  |
|--------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
|                                                        | 1999<br>Chairman ICT/GIFT<br>CAN PL Low-speed CT<br>CAN PL High-speed CT | 2003<br>SAE J-2602-2<br>Authorized<br>CT Testhouse             | 2004<br>WG Active Development Member<br>Pilot CTA<br>Autosar CT (modules, stacks, clusters) | 2010<br>Autosar Integration Tests<br>Autosar Acceptance Tests<br>Autosar Acceptance Tests | <b>2012</b><br>CAN FD Interest & Marketing Groups<br>Use Case Analysis<br>CT Testplan development |  |
| www.cs-group.de                                        |                                                                          |                                                                | 2                                                                                           |                                                                                           |                                                                                                   |  |

3

# **Motivation for using CAN-FD for IVN**

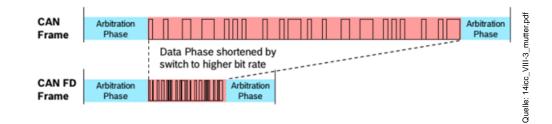







- Customer requirements in the areas of safety, increased comfort and easier handling are still intensifying the trend
- Many mechanically based functions will be replaced by software-based mechatronic functions
- $\rightarrow$  The significance of electronics is increasing rapidly
- → But the components shall still work with each other!

# **Automotive communication landscape**

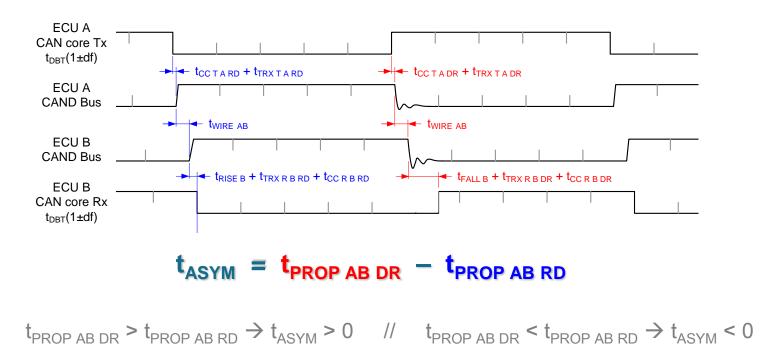



**C & S** 

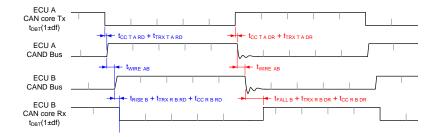
# **CAN-FD** – Challenge for the IVN topology designer

# What is important to consider for CAN-FD IVN topology design?

The most significant technological challenges for the IVN topology designer as a result of the evolutionary step from classical CAN to CAN-FD.




- Still valid are rules for the **arbitration phase** 
  - Oscillator frequency tolerance considering the bit timing settings within the arbitration phase
  - Arbitration scenarios with focus on the propagation delay
- Additional rules for the fast data phase
  - Oscillator frequency tolerance considering the bit timing settings within the data phase
  - Data phase scenarios with focus on the asymmetric delay
  - Analogue **settle time** signal of differential signal at the receiving node


## Asymmetric delay – the new validation criteria

New validation criteria to be taken into account for CAN-FD IVN topology design and transceiver selection:

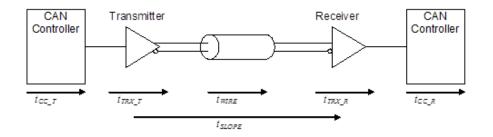
# Asymmetric delay (t<sub>ASYM</sub>) between recessive to dominant and dominant to recessive edges



# Impacts on propagation delay symmetry



## Propagation delays of systems are not symmetric (t<sub>ASYM</sub> ≠ 0ns)

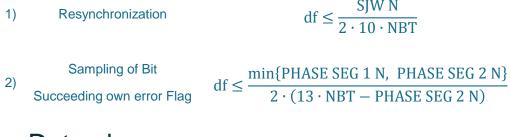

- <u>Transmitter and Receiver propagation delays are different</u>
- Slope delays RD and DR are different
- Influence of different suppliers, temperature, supply voltage, etc.
  - Communication controller:  $t_{CC \underline{T} A RD} \neq t_{CC \underline{T} A DR} \neq t_{CC \underline{R} B RD} \neq t_$
  - Transceiver:  $t_{TRX \underline{T} A RD} \neq t_{TRX \underline{T} A DR} \neq t_{TRX \underline{R} B RD} \neq t_{TRX \underline{R} B A DR}$
  - Edges (rising and falling):  $t_{RISE B} \neq t_{FALL B}$

# Validation criteria for CAN-FD IVN topologies

#### What are the validation criteria for CAN-FD IVN topologies?

Rules recommended for the validation of CAN-FD systems:

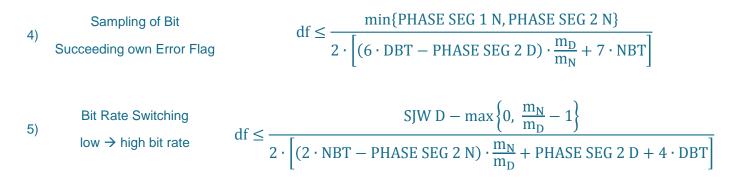
- Bit timing settings according to ISO/CD 11898-1
- Propagation delay limits for CAN-FD



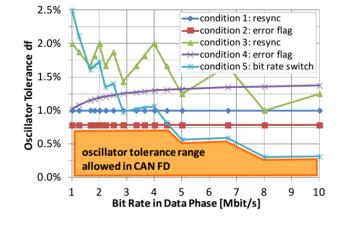

- Propagation delay limits for the arbitration phase (= classical CAN)
- Propagation delay limits for the data phase
- Transmitter loop delay limits for the data phase
- Settle time of differential signal at the receiver

# Bit timing settings according to ISO/CD 11898-1

To ensure correct communication, bit timing configurations and clock tolerance shall be taken into account for CAN-FD IVN topology design


Arbitration phase ( = classical CAN)

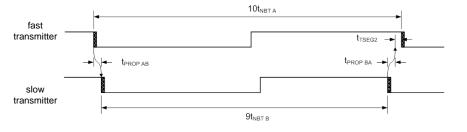




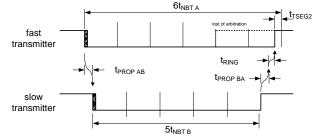

3) Resynchronization

$$df \le \frac{SJW D}{2 \cdot 10 \cdot DBT}$$



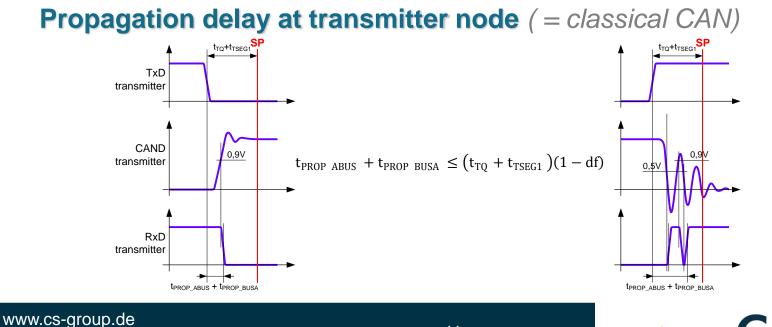

www.cs-group.de communication & systems group • • • C & S




# Propagation delay limits for the arbitration phase

#### **Propagation delay in the arbitration phase** (= classical CAN)

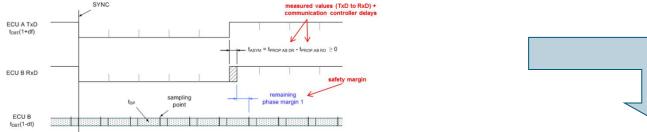





dominant to recessive

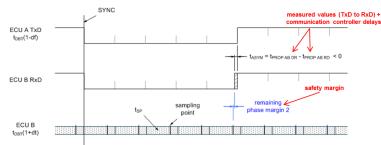


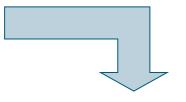
 $t_{PROP AB RD} + t_{PROP BA RD} \le t_{NBT} - t_{TSEG2} - (19t_{NBT} - t_{TSEG2}) df$ 


 $t_{PROP AB RD} + t_{PROP BA DR} \le t_{NBT} - t_{TSEG2} - (11t_{NBT} - t_{TSEG2}) df$ 



communication & systems group


11

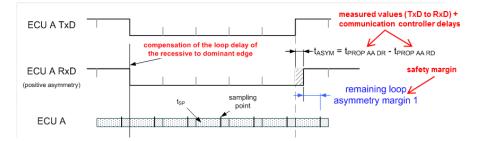

# **Propagation DR > Propagation RD**

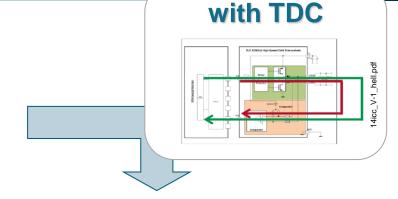


$$\frac{t_{ASYM}}{t_{DBT}} < \left(5 + \frac{t_{SPB}}{t_{DBT}} - \frac{t_{TQB}}{t_{DBT}}\right) (1 - dt_B) - 5(1 + dt_A) - \frac{t_{RPM1}}{t_{DBT}}$$

## **Propagation DR < Propagation RD**

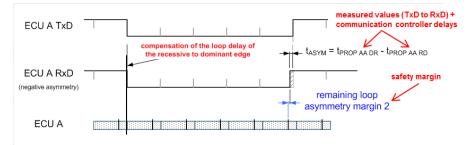


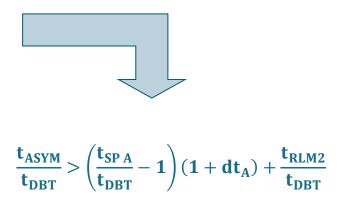




$$\frac{t_{ASYM}}{t_{DBT}} > \left(4 + \frac{t_{SPB}}{t_{DBT}}\right) (1 + dt_B) + \frac{t_{RPM2}}{t_{DBT}} - 5(1 - dt_A)$$

••••C&S

# Transmitter loop delay limits for the data phase

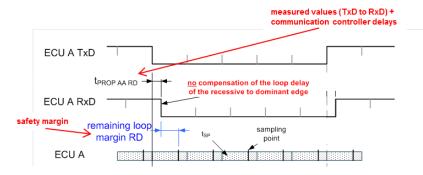

# **Propagation DR > Propagation RD**

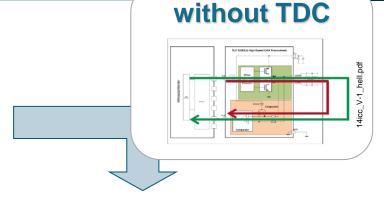





$$\frac{t_{ASYM}}{t_{DBT}} < \frac{t_{SPA}}{t_{DBT}} (1 - dt_A) - \frac{t_{RLM1}}{t_{DBT}}$$

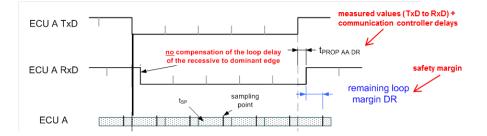
## **Propagation DR < Propagation RD**

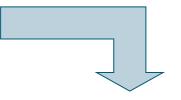



•••C&S

# Transmitter loop delay limits for the data phase


# **Propagation RD**

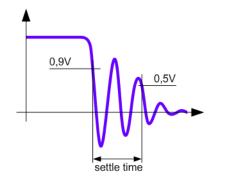





$$\frac{t_{PROP AA RD}}{t_{DBT}} < \frac{t_{SP A}}{t_{DBT}} (1 - dt_A) - \frac{t_{RLM RD}}{t_{DBT}}$$

#### **Propagation DR**






 $\frac{t_{PROP AA DR}}{t_{A}} < \frac{t_{SP A}}{t_{A}} (1 - dt_{A}) - \frac{t_{RLM DR}}{t_{A}}$ t<sub>DBT</sub> t<sub>DBT</sub> t<sub>DBT</sub>

•••C&S

# Settle time of differential signal at the receiver

# Differential CAN signal at the bus pins of the transceiver

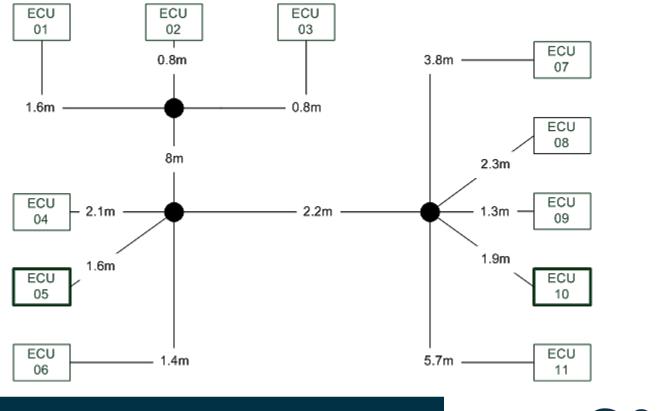


The settle time test does not consider any delays or baud rate drifts.

#### Recommendation

$$\frac{t_{settle \ time}}{t_{DBT}} \le 30\% \qquad \rightarrow \ 0K$$
$$30\% < \frac{t_{settle \ time}}{t_{DBT}} \le 50\% \quad \rightarrow \ WARNING$$

$$50\% < rac{t_{settle time}}{t_{DBT}}$$


→ SEVERE WARNING

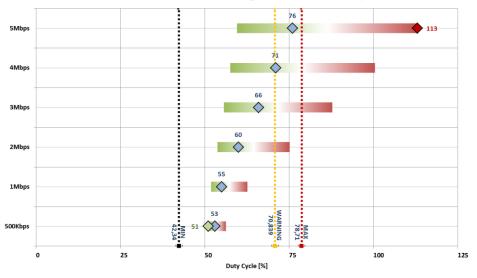
| Baudrate[Mbps] | Bit time [ns] | 30% of DBT [ns] | 50% of DBT [ns] |
|----------------|---------------|-----------------|-----------------|
| 0.5            | 2000          | 600             | 1000            |
| 1              | 1000          | 300             | 500             |
| 2              | 500           | 150             | 250             |
| 3              | 333           | 100             | 167             |
| 4              | 250           | 75              | 125             |
| 5              | 200           | 60              | 100             |

#### **Example : Topology overview**

# CAN-FD plug fest topology as example

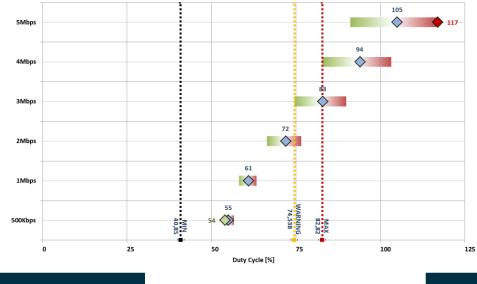
- Number of participants: 11 nodes with 3 splice points
- Total cable length: 33.5 meter
- Decentralized termination with 2x120Ω resistors (ECU 5 &10)




#### **Example : Validation using simulation**

#### Simulation with established validation criteria

- Correct communication during baud rates up to 2 Mbps
- Without using TDC, several nodes switch in Bus-OFF state, correct communication will be granted only <u>with</u> TDC enabled


## Simulation results

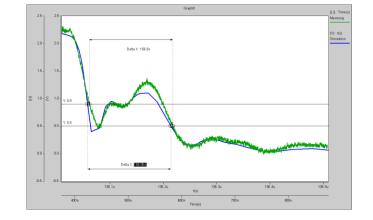
NOTE: A safety margin of 10% is set to compensate missing details in the datasheet, such as the worst case characteristics of the transceiver and propagation delays of the communication controller.



#### **Propagation delay**

#### **Transmitter loop delay**




www.cs-group.de communication & systems group

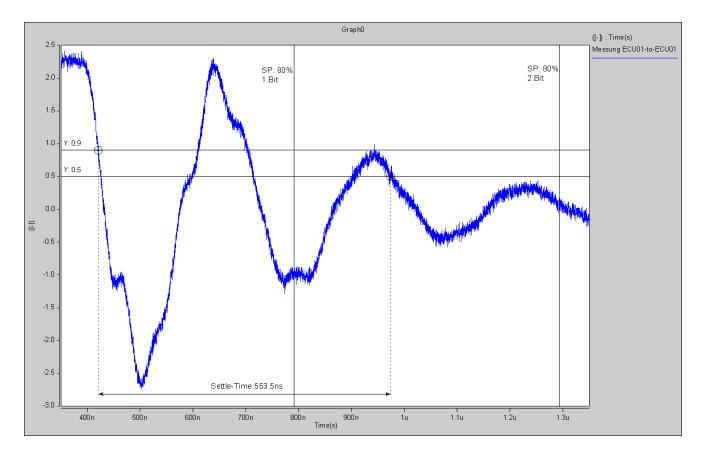
17

#### **Measurement with CAN-FD Test modules**

- using an exact replica of topology and settings to verify simulation results
- validation criteria of measurement
  - adoption of an error counter on Tx/Rx
  - Bus-OFF state of one or more nodes

#### **Measuring results**




 The correct communication as well as the verification of the simulation results conform to the expected estimation



| baud rate [Mbps] | simulation | measurement |  |
|------------------|------------|-------------|--|
| 0.5              | PASS       | PASS        |  |
| 1                | PASS       | PASS        |  |
| 2                | PASS*      | PASS*       |  |
| 3                | FAIL       | FAIL        |  |
| 4                | FAIL       | FAIL        |  |
| 5                | FAIL       | FAIL        |  |

\*only with the optional use of the transmitter delay compensation

#### **Example : Results at Settle Time**



- Ringing duration larger than a bit time (baud rate of 2 Mbps)
- For safety communication topology has to be optimised

NOTE: Behaviour only occurs on communication between ECU01, ECU02 and ECU03 because of the missing termination node on the upper splice point – communication between these ECUs and other nodes is O.K.

**C** & S

# Analysis of validation efforts in given example

## Validation of a CAN-FD IVN topology 11 ECUs require at least:

- Creation of
  - 11 ECUs and their distinct assembly configuration
  - 13 cable elements and their distinct configuration
  - Stimulus components to generate bit patterns for 11 ECUs
- Setting up of
  - A different temperature case variations
     (simulation only, laboratory measurement imply just room temperature → less informative value)
- Execute, monitor and document
  - 726 propagation delay measurements (11<sup>2</sup> [ECU] \* 2 [edges/signal path] \* 3 [temp.])
  - 121 settle time measurements
- Calculate and apply to the measurements 8 limits for (using just one fixed bit timing setting for all ECUs)
  - 3 arbitration phase criteria
  - 5 data phase criteria

# → Simulation is not effective without <u>automation</u>!

- CAN-FD is a further building block, helping to close the gap between the growing needs regarding exchange of information between electronic units and the currently available technologies.
- CAN-FD indeed bases on the well-known CAN 2.0 technology but additional criteria need to be considered for the topology validation.
- Maximum baud rate depends on the target topology (example topology → 2Mbps), i.e. each topology needs to be validated.
- Automation supports the CAN-FD IVN topology designer by the handling of the high effort for the topology validation.



# Thanks for your attention! Please visit our booth!

#### C & S group GmbH

Am Exer 19b 38302 Wolfenbüttel Germany Sebastianstrasse 1a 85049 Ingolstadt Germany

Tel +49 53 31 · 90 555 0 Fax +49 53 31 · 90 555 110

info@cs-group.de www.cs-group.de

