
LIN Specification Package
Revision 2.2A

December 31, 2010; Page 1
LIN
 Specification Package

Revision 2.2A

© LIN Consortium, 2010.

This specification as released by the LIN Consortium is intended for the purpose of
information only and is provided on an "AS IS" basis only and cannot be the basis for
any claims. The LIN Consortium will not be liable for any use of this Specification. The
unauthorized use, e.g. copying, displaying or other use of any content from this docu-
ment is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®. All rights reserved.

All distributions are registered.
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 2
Issue Date Remark

LIN 1.0 1999-07-01 Initial Version of the LIN Specification

LIN 1.1 2000-03-06

LIN 1.2 2000-11-17

LIN 1.3 2002-12-13

LIN 2.0 2003-09-16 Major Revision Step

LIN 2.1 2006-11-24
Clarifications, configuration modified, transport layer

enhanced and diagnostics added.

LIN 2.2 2010-12-31
Updated document according to LIN 2.1 Errata sheet 1.4

Softened bit sampling specification

LIN 2.2A 2010-12-31 Corrected wakeup signal definition in chapter 2.6.2

REVISION HISTORY
descd
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 3
TABLE OF CONTENTS

Specification Package
1.1 LIN ..10
1.1.1 Scope ...10
1.1.2 Features and possibilities ...10
1.1.3 Work flow concept ..11
1.1.4 Node concept ...12
1.1.5 Concept of operation ..12
1.1.5.1 Master and slave ..12
1.1.5.2 Frames ...13
1.1.5.3 Data transport...13
1.1.5.4 Schedule table..14
1.1.6 Document overview ..14
1.1.7 History and background..14
1.1.7.1 Compatibility with LIN 1.3 ...15
1.1.7.2 Compatibility with LIN 2.0 ...16
1.1.7.3 Compatibility with LIN 2.1 ...16
1.1.7.4 Changes between LIN 1.3 and LIN 2.0 ..17
1.1.7.5 Changes between LIN 2.0 and LIN 2.1 ..17
1.1.7.6 Changes between LIN 2.1 and LIN 2.2 ..18
1.1.8 References ...18
1.2 LIN Glossary ...20

Protocol Specification
2.1 Introduction ...25
2.2 Signal Management ..26
2.2.1 Signal types ..26
2.2.2 Signal consistency..26
2.2.3 Signal packing ..26
2.2.4 Signal reception and transmission..27
2.3 Frame Transfer ...29
2.3.1 Frame structure ..29
2.3.1.1 Break field...30
2.3.1.2 Sync byte field ..30
2.3.1.3 Protected identifier field ..31
2.3.1.4 Data ..31
2.3.1.5 Checksum...32
2.3.2 Frame length ..32
2.3.3 Frame types..33
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 4
2.3.3.1 Unconditional frame..33
2.3.3.2 Event triggered frame ...34
2.3.3.3 Sporadic frame ...36
2.3.3.4 Diagnostic frames...37
2.3.3.5 Reserved frames ..38
2.4 Schedule tables ..39
2.4.1 Time definitions ..39
2.4.2 frame Slot ...39
2.4.3 Schedule table handling ...40
2.5 Task Behavior Model ..41
2.5.1 Master task state machine..41
2.5.2 Slave task state machine..41
2.5.2.1 Break/sync field sequence detector..41
2.5.2.2 Frame processor ..42
2.6 Network Management...45
2.6.1 slave communication state diagram ...45
2.6.2 Wake up ...46
2.6.3 Go to sleep ...47
2.7 Status Management..49
2.7.1 Concept ..49
2.7.2 Event triggered frames ...49
2.7.3 Reporting to the cluster ..49
2.7.4 Reporting within own node ...50
2.8 Appendices ...52
2.8.1 Table of numerical properties ...52
2.8.2 Table of valid frame identifiers..53
2.8.3 Example of checksum calculation ..55
2.8.4 Syntax and mathematical symbols used in this standard.............56

Transport Layer Specification
3.1 Introduction ...58
3.2 Transport layer..59
3.2.1 PDU structure ...59
3.2.1.1 Overview...60
3.2.1.2 NAD ..60
3.2.1.3 PCI..60
3.2.1.4 LEN...61
3.2.1.5 SID..61
3.2.1.6 D1 to D6 ...61
3.2.2 Communication...61
3.2.2.1 Single Frame Transmission..62
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 5
3.2.2.2 Multiple Frame Transmission ...62
3.2.3 Error Handling ..62
3.2.4 Defined requests ..63
3.2.5 timing constraints..63

Node configuration and Identification Specification
4.1 Introduction ...67
4.2 Node configuration and identification..68
4.2.1 LIN product identification ..68
4.2.1.1 Wildcards..68
4.2.2 Slave Node model ..69
4.2.2.1 Initial NAD...70
4.2.3 PDU structure ...71
4.2.3.1 Overview...72
4.2.3.2 NAD ..72
4.2.3.3 PCI..72
4.2.3.4 SID..73
4.2.3.5 RSID ...73
4.2.3.6 D1 to D5 ...73
4.2.4 Node configuration and identification ...74
4.2.5 Node configuration services ...74
4.2.5.1 Assign NAD ..74
4.2.5.2 Conditional change NAD ..75
4.2.5.3 Data dump ..76
4.2.5.4 Save Configuration ...76
4.2.5.5 Assign frame ID range..77
4.2.6 Identification ...78
4.2.6.1 Read by identifier..78

Diagnostic specification
5.1 Introduction ...81
5.1.1 using the transport layer ...81
5.1.2 LIN master ..82
5.1.3 slave nodes ..82
5.2 Diagnostic classes ..83
5.2.1 Diagnostic Class I ...83
5.2.1.1 Transport protocol ..83
5.2.1.2 Diagnostic services...83
5.2.2 Diagnostic Class II ..83
5.2.2.1 Transport protocol ..83
5.2.2.2 Diagnostic services...84
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 6
5.2.3 Diagnostic Class III ...84
5.2.3.1 Addressing..84
5.2.3.2 Transport protocol ..84
5.2.3.3 Diagnostic services...85
5.2.4 Summary of slave node classes...85
5.2.5 Master node requirements..86
5.2.5.1 Transport protocol ..86
5.2.5.2 Fault management, sensor reading, I/O control86
5.2.6 User defined diagnostics ..87
5.3 Requirements for Signal based Diagnostics88
5.4 Transport Protocol handling in LIN-master90
5.4.1 Diagnostic master request schedule ..90
5.4.2 Diagnostic slave response schedule ..91
5.4.3 Diagnostic schedule execution ...92
5.4.3.1 Diagnostics Interleaved Mode ..93
5.4.3.2 Diagnostics Only Mode...95
5.4.4 Transmission handler requirements ...97
5.4.4.1 Master node transmission handler ...98
5.5 Slave node transmission handler..103
5.6 Slave diagnostic timing requirements ...107

Physical Layer Specification
6.1 Introduction ...110
6.2 Physical Layer Compatibility ...111
6.3 Bit rate Tolerance ...112
6.4 Timing Requirements..114
6.4.1 Bit Timing Requirements ..114
6.4.2 Synchronization Procedure ..114
6.4.3 Bit Sample Timing ..114
6.5 Line Driver/Receiver ...117
6.5.1 General Configuration ..117
6.5.2 Definition of Supply Voltages for the Physical Interface117
6.5.3 Signal Specification ..119
6.5.4 Electrical DC parameters..120
6.5.4.1 Electrical AC Parameters ...122
6.5.5 Line Characteristics ..124
6.5.6 Performance in non-operation supply voltage range..................125
6.5.7 Performance during fault modes ..125
6.5.7.1 Loss of supply voltage connection or ground connection...........125
6.5.7.2 Bus wiring short to battery or ground..126
6.5.8 ESD/EMI compliance..126
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 7
Application Program Interface Specification
7.1 Introduction ...128
7.1.0.1 LIN cluster generation ..128
7.1.1 Concept of operation ..128
7.1.1.1 LIN core API ...128
7.1.1.2 LIN node configuration and identification API.............................129
7.1.1.3 LIN transport layer API ...129
7.2 Core API ...130
7.2.1 Driver and cluster management ...130
7.2.1.1 l_sys_init ...130
7.2.2 Signal interaction ..130
7.2.2.1 Signal types ..131
7.2.2.2 Scalar signal read...131
7.2.2.3 Scalar signal write ..131
7.2.2.4 Byte array read ...132
7.2.2.5 Byte array write...132
7.2.3 Notification..133
7.2.3.1 l_flg_tst ...133
7.2.3.2 l_flg_clr ...134
7.2.4 Schedule management...134
7.2.4.1 l_sch_tick..134
7.2.4.2 l_sch_set ..135
7.2.5 Interface management..136
7.2.5.1 l_ifc_init...136
7.2.5.2 l_ifc_goto_sleep..137
7.2.5.3 l_ifc_wake_up...137
7.2.5.4 l_ifc_ioctl ...138
7.2.5.5 l_ifc_rx ..138
7.2.5.6 l_ifc_tx ..139
7.2.5.7 l_ifc_aux ...140
7.2.5.8 l_ifc_read_status ..140
7.2.6 User provided call-outs...143
7.2.6.1 l_sys_irq_disable ..143
7.2.6.2 l_sys_irq_restore ..144
7.3 Node configuration and identification..145
7.3.1 Node configuration ...145
7.3.1.1 ld_is_ready ...145
7.3.1.2 ld_check_response...146
7.3.1.3 ld_assign_frame_id_range ...146
7.3.1.4 ld_assign_NAD...147
7.3.1.5 ld_save_configuration...147
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 8
7.3.1.6 ld_read_configuration ...148
7.3.1.7 ld_set_configuration ...148
7.3.2 ld_conditional_change_NAD ..149
7.3.3 Identification ...150
7.3.3.1 ld_read_by_id ...150
7.3.3.2 ld_read_by_id_callout...151
7.4 Transport layer..152
7.4.1 Raw and Cooked API ...152
7.4.2 Initialization...152
7.4.3 Raw API..153
7.4.3.1 ld_put_raw ..153
7.4.3.2 ld_get_raw ..153
7.4.3.3 ld_raw_tx_status...154
7.4.3.4 ld_raw_rx_status ..154
7.4.4 Cooked API ..155
7.4.4.1 ld_send_message ..155
7.4.4.2 ld_receive_message...156
7.4.4.3 ld_tx_status ..157
7.4.4.4 ld_rx_status ..157
7.5 Examples ..159
7.5.1 Master node example ...159
7.5.2 Slave node example ...161

Node Capability Language Specification
8.1 Introduction ...165
8.1.1 Plug and play workflow...165
8.1.1.1 LIN cluster Generation..165
8.1.1.2 LIN cluster design...166
8.1.1.3 Debugging ..166
8.2 Node capability file definition ..167
8.2.1 Global definition..167
8.2.1.1 Node capability language version number definition167
8.2.2 Node definition..167
8.2.3 General definition ...167
8.2.3.1 LIN protocol version number definition168
8.2.3.2 LIN Product Identification ...168
8.2.3.3 Bit rate ..168
8.2.3.4 Sends wake up signal...168
8.2.4 Diagnostic definition ...168
8.2.5 Frame definition..169
8.2.5.1 Frame properties ..170
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 9
8.2.5.2 Signal definition ..170
8.2.5.3 Signal encoding type definition...171
8.2.6 Status management ...172
8.2.7 Free text definition ..172
8.3 Overview of Syntax...173
8.4 Example file ..174

Configuration Language Specification
9.1 Introduction ...176
9.2 LIN description file definition...177
9.2.1 Global definition..177
9.2.1.1 LIN protocol version number definition177
9.2.1.2 LIN language version number definition177
9.2.1.3 LIN speed definition..177
9.2.1.4 Channel postfix name definition ...178
9.2.2 Node definition..178
9.2.2.1 Participating nodes ...178
9.2.2.2 Node attributes ...178
9.2.2.3 Node composition definition ...180
9.2.3 Signal definition ..181
9.2.3.1 Standard signals...181
9.2.3.2 Diagnostic signals...182
9.2.3.3 Signal groups..182
9.2.4 Frame definition..183
9.2.4.1 Unconditional frames..183
9.2.4.2 Sporadic frames ...184
9.2.4.3 Event triggered frames ...184
9.2.4.4 Diagnostic frames...185
9.2.5 Schedule table definition ..186
9.2.6 Additional information ...188
9.2.6.1 Signal encoding type definition...188
9.2.6.2 Signal representation definition ..190
9.3 Overview of Syntax...191
9.4 Examples ..192
9.4.1 LIN description file ..192
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 10

LIN
1.1 LIN
LIN (Local Interconnect Network) is a concept for low cost automotive networks, which
complements the existing portfolio of automotive multiplex networks. LIN will be the
enabling factor for the implementation of a hierarchical vehicle network in order to gain
further quality enhancement and cost reduction of vehicles. The standardization will
reduce the manifold of existing low-end multiplex solutions and will cut the cost of
development, production, service, and logistics in vehicle electronics.

1.1.1 SCOPE

The LIN standard includes the specification of the transmission protocol, the transmis-
sion medium, the interface between development tools, and the interfaces for soft-
ware programming. LIN promotes the interoperability of network nodes from the
viewpoint of hardware and software and a predictable EMC behavior.

1.1.2 FEATURES AND POSSIBILITIES

The LIN is a serial communications protocol which efficiently supports the control of
mechatronics nodes in distributed automotive applications.

The main properties of the LIN bus are:

• single master with multiple slaves concept

• low cost silicon implementation based on common UART/SCI interface
hardware, an equivalent in software or as pure state machine.

• self synchronization without a quartz or ceramics resonator in the slave nodes

• deterministic signal transmission with signal propagation time computable in
advance

• low cost single-wire implementation

• speed up to 20 kbit/s.

• signal based application interaction

• predictable behavior

• reconfigurability

• transport layer and diagnostic support

The intention of this specification is to achieve compatibility with any two LIN imple-
mentations with respect to the scope of the standard, i.e. from the application inter-
face, API, all the way down to the physical layer.
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 11

LIN
LIN provides a cost efficient bus communication where the bandwidth and versatility
of CAN are not required. The specification of the line driver/receiver is based on the
ISO 9141 standard [1] with some enhancements regarding the EMI behavior.

1.1.3 WORK FLOW CONCEPT

The LIN workflow concept allows for the implementation of a seamless chain of design
and development tools and it enhances the speed of development and the reliability of
the LIN cluster.

The Configuration Language Specification allows for safe sub-contracting of nodes
without jeopardizing the LIN system functionality by e.g. message incompatibility or
network overload. It is also a powerful tool for debugging of a LIN cluster, including
emulation of non-finished nodes.

The Node Capability Language Specification, provides a standardized syntax for
specification of off-the-shelves slave nodes. This will simplify procurement of standard
slave nodes as well as provide possibilities for tools that automate cluster generation.
Thus, true Plug-and-Play with slave nodes in a cluster will become a reality.

An example of the intended workflow is depicted below:

LIN Description

LIN cluster
design tool

Node Capability Files

File

LIN

LIN cluster
generator

Bus analyzer and
emulator

Design

LIN cluster Debugging

Slave1 Slave2 Slave3 Master

The slave nodes are connected to the master node forming a LIN cluster. The corre-
sponding node capability files are parsed by the LIN cluster design tool to generate a
LIN description file (LDF) in the LIN cluster design process. The LDF is parsed by the
LIN cluster generator to automatically generate LIN related functions in the desired
nodes (the Master node and Slave3 node in the example shown in the picture above).
The LDF is also used by a LIN bus analyzer/emulator tool to allow for cluster debug-
ging.
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 12

LIN
1.1.4 NODE CONCEPT

The workflow described above generates the complete LIN cluster interaction module
and the developer only has to supply the application performing the logic function of a
node. Although much of the LIN specifications assumes a software implementation of
most functions, alternative realizations are promoted. In the latter case, the LIN docu-
mentation structure shall be seen as a description model only:

A node in a cluster interfaces to the physical bus wire using a frame transceiver. The
frames are not accessed directly by the application; a signal based interaction layer is
added in between. As a complement, a transport layer interface exists between the
application and the frame handler, as depicted below.

TL Signal interaction

Application

LIN bus line

API

Protocol

Physical

Frame handler

1.1.5 CONCEPT OF OPERATION

1.1.5.1 Master and slave

A cluster consists of one master task and several slave tasks. A master node contains
the master task as well as a slave task. All other slave nodes contain a slave task only.
A node may participate in more than one cluster. The term node relates to a single bus
interface of a node if the node has multiple bus interfaces. A sample cluster with one
master node and two slave nodes is depicted below:

LIN bus

slave task

master task

master node slave node slave node

slave task slave task

The master task decides when and which frame shall be transferred on the bus. The
slave tasks provide the data transported by each frame.
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 13

LIN
Both the master task and the slave task are parts of the Frame handler, see
Section 1.1.4.

1.1.5.2 Frames
A frame consists of a header (provided by the master task) and a response (provided
by a slave task).

The header consists of a break field and sync field followed by a frame identifier. The
frame identifier uniquely defines the purpose of the frame. The slave task appointed
for providing the response associated with the frame identifier transmits it, as depicted
below. The response consists of a data field and a checksum field.

The slave tasks interested in the data associated with the frame identifier receives the
response, verifies the checksum and uses the data transported.

Master task

Slave task 1 Response

Header Header

ResponseSlave task 2

This results in the following desired features:

• System flexibility: Nodes can be added to the LIN cluster without requiring
hardware or software changes in other slave nodes.

• Message routing: The content of a message is defined by the frame identifier
(similar to CAN).

• Multicast: Any number of nodes can simultaneously receive and act upon a
single frame.

1.1.5.3 Data transport
Two types of data may be transported in a frame; signals or diagnostic messages.

Signals
Signals are scalar values or byte arrays that are packed into the data field of a frame.
A signal is always present at the same position of the data field for all frames with the
same frame identifier.

Diagnostic messages
Diagnostic messages are transported in frames with two reserved frame identifiers.
The interpretation of the data field depends on the data field itself as well as the state
of the communicating nodes.
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 14

LIN
1.1.5.4 Schedule table
The master task (in the master node) transmits headers based on a schedule table.
The schedule table specifies the frames and the interval between the start of a frame
and the start of the following frame. The master application may use different sched-
ule tables and select among them.

1.1.6 DOCUMENT OVERVIEW

The LIN Specification Package consists of the following specifications:

• The Protocol Specification describes the data link layer of LIN.

• The Transport Layer Specification describes how to transport data that can
be up to 4095 bytes. Normally the transport layer is used for node
configuration, identification and diagnostics.

• The Node configuration and Identification Specification defines how to
configure a slave node and how to identify a slave node.

• The Diagnostic specification describes types of diagnostic services a slave
node will support. All diagnostic services are using the transport layer.

• The Physical Layer Specification describes the physical layer, including bit
rate, bit rate tolerances, etc.

• The Application Program Interface Specification describes the interface
between the network and the application program, including the node
configuration, identification and transport layer interfaces.

• The Configuration Language Specification describes the format of the LIN
description file, which is used to configure the complete network and serve as
a common interface between the OEM and the suppliers of the different
nodes, as well as an input to development and analysis tools.

• The Node Capability Language Specification describes a format used to
describe properties of slave nodes. A node capability file may be used with a
LIN cluster design tool to automatically create LIN description files.

1.1.7 HISTORY AND BACKGROUND

LIN revision 1.0 was released in July 1999 and it was heavily influenced by the VLITE
bus used by some automotive companies. The LIN standard was updated twice in
year 2000, resulting in LIN 1.2 in November 2000. In November 2002 the LIN Consor-
tium released the LIN 1.3 standard. Changes where mainly made in the physical layer
and they where targeted at improving compatibility between nodes.
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 15

LIN
The LIN 2.0 represents an evolutionary growth from its predecessor, LIN 1.3. Nodes
designed for LIN 2.0 and LIN 1.3 will communicate with each other with a few excep-
tions, as described in Section 1.1.7.1.

At the same time, the LIN 2.0 specification was completely reworked and areas where
problems have been found were clarified and, when needed, reworked.

LIN 2.0 was an adjustment of the LIN specification to reflect the latest trends identi-
fied; especially the use of off-the-shelves slave nodes. Three years of experience with
LIN and inputs from the SAE J2602 Task Force have contributed to this major revi-
sion. LIN 2.0 also incorporates new features, mainly standardized support for configu-
ration/diagnostics and specified node capability files, both targeted at simplifying use
of off-the-shelves slave nodes.

Practical experience with LIN 2.0 has led to some findings in the specification. At the
start of the work to update to LIN 2.1 it was decided that backwards compatibility is a
major goal, see following sections. The LIN 2.1 contains mostly clarifications of the
functionality. Some restrictions have been introduced to make different implementa-
tions more in line with each other. Some functionality has been deleted and some has
been added, see Section 1.1.7.5.

The issues found in the LIN 2.1 specification have been collected in an LIN errata
sheet. Now because the LIN errata sheet has been unchanged for some time all the
findings have been introduced in the LIN 2.2 specification.

1.1.7.1 Compatibility with LIN 1.3

LIN 2.2 is a superset of LIN 1.3.

A LIN 2.2 master node can handle clusters consisting of both LIN 1.3 slaves and/or
LIN 2.2 slaves. The master will then avoid requesting the new LIN 2.1 features from a
LIN 1.3 slave:

• Enhanced checksum,

• Reconfiguration and diagnostics,

• Automatic baudrate detection,

• Response_error status monitoring.

LIN 2.2 slave nodes can not operate with a LIN 1.3 node (e.g. the LIN1.3 master does
not support the enhanced checksum).

The LIN 2.2 physical layer is backwards compatible with the LIN1.3 physical layer. But
not the other way around. The LIN 2.2 physical layer sets harder requirement, i.e. a
node using the LIN 2.2 physical layer can operate in a LIN 1.3 cluster.
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 16

LIN
1.1.7.2 Compatibility with LIN 2.0

A LIN 2.2 master node may handle a LIN 2.0 slave node if the master node also con-
tains all functionality of a LIN 2.0 master node, e.g. obsolete functions like Assign
frame Id.

A LIN 2.2 slave node can be used in a cluster with a LIN 2.0 master node if the LIN 2.2
slave node is pre-configured, i.e. the LIN 2.2 slave node has a valid configuration after
reset.

A LIN 2.0 slave node shall not use NAD 0x7E since it is reserved as functional
address for diagnostics in LIN2.1. The LIN 2.2 slave node will consider NAD 0x7E as
a functional NAD and a LIN 2.0 slave node as a NAD.

1.1.7.3 Compatibility with LIN 2.1

A LIN 2.2 node is fully compatible with a LIN 2.1 node
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 17

LIN
1.1.7.4 Changes between LIN 1.3 and LIN 2.0

The items listed below are changed between LIN 1.3 and LIN 2.0. Renamings and
clarifications are not listed in this section.

• Byte array signals are supported, thus allowing signals sizes up to eight bytes.

• Signal groups are deleted (replaced by byte arrays).

• Automatic bit rate detection is incorporated in the specification.

• Enhanced checksum (including the protected identifier) as an improvement to
the LIN 1.3 classic checksum.

• Sporadic frames are defined.

• Network management timing is defined in seconds, not in bit times.

• Status management is simplified and reporting to the network and the
application is standardized.

• Mandatory node configuration commands are added, together with some
optional commands.

• Diagnostics is added.

• A LIN Product Identification for each slave node is standardized.

• The API is made mandatory for micro controller based nodes programmed in
C.

• The API is changed to reflect the changes; byte array, go to sleep, wake up
and status reading.

• A diagnostics API is added.

• A node capability language specification is added.

• The configuration language specification is updated to reflect the changes
made; node attributes, node composition, byte arrays, sporadic frames and
configuration are added.

1.1.7.5 Changes between LIN 2.0 and LIN 2.1

The major work has been to extend descriptions for better understanding.
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 18

LIN
Following functional changes have been done:

• Message identifiers for slave node frames are removed

• Assign frame ID configuration service is removed

• Assign frame ID range configuration service is added

• Save configuration service is added.

• Status reporting to application is enhanced

• Event-triggered frame collision handling modified

• The IDs 2 to 31 of the service Read by Identifier are reserved.

• Implementation of Diagnostic Classes 1 to 3 and respective Diagnostic
Services.

• Transport layer enhanced with timings.

• A node operating on more than one cluster has been clarified.

• Packing a signal in more than one frame has been clarified.

• NAD 0x7E (functional NAD) is reserved as functional address for diagnostics

• Node capability language specification is extended with new parameters.

• The configuration language specification is updated to reflect the changes
made; node attributes, node composition, event triggered frames and
configuration are added.

1.1.7.6 Changes between LIN 2.1 and LIN 2.2

Only spelling corrections and clarifications has been done.

1.1.8 REFERENCES

[1] “Road vehicles - Diagnostic systems - Requirement for interchange of digital
information”, International Standard ISO9141, 1st Edition, 1989

[2] “Road vehicles - Diagnostics on Controller Area Network (CAN) - Part 2: Network
layer services“, International Standard ISO 15765-2.4, Issue 4, 2002-06-21

[3] “Road vehicles - Diagnostics on controller area network (CAN) - Part 3: Imple-
mentation of diagnostic services”, International Standard ISO 15765-3.5, Issue 5,
2002-12-12.
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 19

LIN
[4] “Road vehicles - Diagnostic systems — Part 1: Diagnostic services”, Interna-
tional Standard ISO 14229-1.6, Issue 6, 2001-02-22
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 20

LIN Glossary
1.2 LIN GLOSSARY
The following terms are used in one or more of the LIN 2.1 Specification Package
documents. Each term is briefly described in the glossary and a reference (if applica-
ble) to the section where the term is defined/described. Words written in bold have
own entries in the glossary.

break field A break field consist of a dominant part, the break, and a
recessive part, the break delimiter.

bus interface The logic (transceiver, UART, etc.) of a node that is con-
nected to the physical bus wire in a cluster.

bus sleep mode No communication occurs in the cluster. Nodes switch out-
put level to the recessive state. Section 2.6.3.

byte field Each field (except the break field) on the bus is sent in a
byte field; the byte field includes the start bit and stop bit.
Section 2.3.1.

CF Consecutive Frame. Section 3.2.1.3.

checksum model Two checksum models are defined; classic checksum
and enhanced checksum. The enhanced checksum
includes the protected identifier in the checksum calcula-
tion, classic checksum does not. Section 2.3.1.5.

classic checksum The checksum model used in the LIN specification ver-
sions up to version 1.3 for all frames. In LIN 2.x it is used
only for the diagnostic frames. The classic checksum
considers the data bytes only. Section 2.3.1.5.

cluster design The process of designing the information in the LIN
Description File. Section 1.1.3.

cluster generation The process of targeting one (or multiple) of the nodes in
the cluster to the LIN Description File. Section 1.1.3.

checksum error The checksum of the frame is not correct. The cause may
be that the frame was corrupted on the bus or that the
wrong checksum model was used in the frame.

cluster A cluster is defined as the LIN bus wire plus all the nodes.

data The response of a frame carries one to eight data bytes,
collectively called data. Section 2.3.1.4.

data byte One of the bytes in the data. Section 2.3.1.4.
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 21

LIN Glossary
diagnostic frame The collective name for the master request frame and the
slave response frame. Section 2.3.3.4.

DTC Diagnostic Trouble Code. Diagnostic specification.

enhanced checksum The checksum model used in the LIN specification ver-
sions starting from LIN 2.0 for all frames, except the diag-
nostic frames. The enhanced checksum includes the PID
and the data bytes. Section 2.3.1.5.

event triggered frame An event triggered frame is used to allow multiple slave
nodes to provide their response to the same header. This
is useful when the signals in slave nodes involved are
changed sporadically. Section 2.3.3.2.

FC Flow Control. Not used by the LIN Transport Layer.

FF First Frame. Section 3.2.1.3.

frame All information is transmitted packed as frames; a frame
consist of the header and a response. Section 1.1.5.2.

frame identifier The identity of a frame is in the range from 0 to 63 (six-bit
value). Section 2.3.1.3.

frame slot The time period reserved for the transfer of a specific
frame on the bus. Corresponds to one entry in the sched-
ule table. Section 2.4.2.

go to sleep command A special master request frame issued to force slave
nodes to bus sleep mode. Section 2.6.3.

header A header is the first part of a frame; it is always sent by the
master task. Section 2.3.1.

LIN Description File The LDF file is created in the LIN cluster design and
parsed in the LIN cluster generation or by debugging
tools. Configuration Language Specification.

LIN Product Identification A number containing the supplier and function identification
in a LIN slave node. Section 4.2.1.

master node The master node not only contains a slave task, but also
the master task that is responsible for sending all headers
on the bus, i.e. it controls the timing and schedule table
for the bus.
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 22

LIN Glossary
master request frame The master request frame has frame identifier 60 (0x3C)
and is used for diagnostic frames issued by the master
node. Section 2.3.3.4.

master task The master task is responsible for sending all headers on
the bus, i.e. it controls the timing and schedule table for
the bus. Section 2.5.1.

NAD Node Address for slave nodes. Diagnostic frames are
broadcasted and the NAD specifies the addressed, respec-
tively responding slave node. The NAD is the address of a
logical node. Section 4.2.3.2.

node Loosely speaking, a node is an ECU (electronic control
unit). However, a single ECU may be connected to multiple
LIN clusters; in the latter case the term node should be
replaced with bus interface. A physical slave node may be
composed of one or more logical nodes.

Node Capability File A NCF describes a slave node as seen from the LIN bus.
It is used in the cluster design. Node Capability Lan-
guage Specification.

Operational state The slave node may transmit/receive frames in this state.
Section 2.6.1.

PID Protected identifier. Section 2.3.1.3.

protected identifier An eight-bit value containing the frame identifier together
with its two parity bits. Section 2.3.1.3.

publish A signal or an unconditional frame has exactly one pub-
lisher; i.e. the node that is the source of the information.
Compare with subscribe.

request The master node puts request on the slave nodes in node
configuration and in the diagnostics. Section 4.2.5 and
Section 5.2.

reserved frame Reserved frames have frame identifiers that shall not be
used: 62 (0x3E) and 63 (0x3F). Section 2.3.3.5.

response (1) A frame consists of a header and a response.
Section 2.3.1. 
(2) The reply frame for a node configuration or a diagnostic
request is a response. Section 4.2.5.
Website: www.lin-subbus.org

LIN Specification Package
Revision 2.2A

December 31, 2010; Page 23

LIN Glossary
service A service is the composite name for the request/response
combination.

schedule table The schedule table specifies the traffic on the LIN bus.
Section 2.4.

SF Single Frame. Section 3.2.1.3.

slave node A node that contains a slave task only, i.e. it does not con-
tain a master task.

slave response frame The slave response frame has frame identifier 61 (0x3D)
and is used for diagnostic frames issued by one of the
slave nodes. Section 2.3.3.4.

slave task The slave task is responsible for listening to all headers on
the bus and react accordingly, i.e. either publish a frame
response or subscribe to it (or ignore it).

signal A signal is a value or byte array transported in the cluster
using a signal carrying frame. Section 2.2.

signal carrying frame A frame that carries signals shall have an frame identifier
in the range 0 (zero) to 59 (0x3B). Unconditional frames,
sporadic frames and event triggered frames are signal
carrying frames. Section 2.3.3.

sporadic frame A sporadic frame is a signal carrying frame similar to
unconditional frames, but only transferred in its frame
slot if one of its signals is updated by the publisher.
Section 2.3.3.3.

subscribe A signal or an unconditional frame may have none, one
or more subscribers. See also publish.

UDS Unified Diagnostic Service (ISO 14229-1 [4]). Diagnostic
specification.

unconditional frame A signal carrying frame that is always sent in its allocated
frame slot. Section 2.3.3.1.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 24
LIN
 Protocol Specification

Revision 2.2A

© LIN Consortium, 2010.

This specification as released by the LIN Consortium is intended for the purpose of
information only and is provided on an "AS IS" basis only and cannot be the basis for
any claims. The LIN Consortium will not be liable for any use of this Specification. The
unauthorized use, e.g. copying, displaying or other use of any content from this docu-
ment is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®. All rights reserved.
All distributions are registered.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 25

Introduction
2.1 INTRODUCTION
The protocol specification describes the behavior on the bus (e.g. frame transporta-
tion) and in the nodes (e.g. status management).

The scope is covering one LIN bus and its LIN nodes. A node (normally a master
node) that is connected to more than one LIN bus must be handled by higher layers
(e.g. the application).
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 26

Signal Management
2.2 SIGNAL MANAGEMENT
A signal is transported in the data field of a frame.

2.2.1 SIGNAL TYPES

A signal is either a scalar value or a byte array.

A scalar signal is between 1 and 16 bits long. A one bit scalar signal is called a bool-
ean signal. Scalar signals in the size of 2 to 16 bits are treated as unsigned integers.

A byte array is an array of between one and eight bytes.

Each signal has exactly one publisher, i.e. it is always written by the same node in the
cluster. Zero, one or multiple nodes may subscribe to the signal.

All signals have initial values. The initial value for a published signal is valid until the
node writes a new value to this signal. The initial value for a subscribed signal is valid
until a new updated value is received from another node.

2.2.2 SIGNAL CONSISTENCY

Scalar signal writing or reading must be atomic operations, i.e. it should never be pos-
sible for an application to receive a signal value that is partly updated. This also
applies to byte arrays. However, no consistency is guaranteed between any signals.

2.2.3 SIGNAL PACKING

A signal is transmitted with the LSB first and the MSB last. There is no restriction on
packing scalar signals over byte boundaries. Each byte in a byte array shall map to a
single frame byte starting with the lowest numbered data byte, see section 2.3.1.4.

Several signals can be packed into one frame as long as they do not overlap each
other.

Note that signal packing/unpacking is implemented more efficient in software based
nodes if signals are byte aligned and/or if they do not cross byte boundaries.

The same signal can be packed into multiple frames as long as the publisher of the
signal is the same. If a node is receiving one signal packed into multiple frames the
latest received signal value is valid. Handling the same signal packed into frames on
different LIN clusters is out of the scope.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 27

Signal Management
2.2.4 SIGNAL RECEPTION AND TRANSMISSION

The point in time when a signal is transmitted/received needs to be defined to help
design tools and testing tools to analyze timing of signals. This means that all imple-
mentations will behave in a predictable way.

The definitions below do not contain factors such as bit rate tolerance, jitter, buffer
copy execution time, etc. These factors must be taken into account to get a more
detailed analysis. The intention for the definitions below is to have a basis for such
analysis.

The timing is different for a master node and a slave node. The reason is that the mas-
ter node controls the schedule and knows which frame will be sent. A slave node gets
this information first when the header is transmitted on the bus.

The time base and time base tick are defined in section 2.4.

A signal is considered received and available to the application as follows (see also
Figure 2.1):

• Master node - at next time base tick after the maximum frame length. The
master node updates its received signals periodically at the time base start
(i.e. at task level).

• Slave node - when the checksum for the received frame is validated. The
slave node updates its received signals directly after the frame is finished (i.e.
at interrupt level).

time base

Received frame

Master node: At this point in time the
signal is available to the application

Header Response

Slave node: Here the signal is
available to the application

time

frame
on bus

time base tick
time base

Figure 2.1: Timing of signal reception
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 28

Signal Management
A signal is considered transmitted (latest point in time when the application may write
to the signal) as follows (see also Figure 2.2):

• Master node - before the frame transmission is initiated.

• Slave node - when the ID for the frame is received.

time base

Transmitted frame

Header Response

Slave: Latest point the application
 can update the signal

Master: Latest point the application
 can update the signal

on bus
frame

time
time base tick

time base

Figure 2.2: Timing of signal transmission
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 29

Frame Transfer
2.3 FRAME TRANSFER
The entities that are transferred on the LIN bus are frames.

2.3.1 FRAME STRUCTURE

The structure of a frame is shown in Figure 2.3. The frame is constructed of a number
of fields, one break field followed by four to eleven byte fields, labeled as in the figure.

The time it takes to send a frame is the sum of the time to send each byte plus the
response space and the inter-byte spaces.

The header starts at the falling edge of the break field and ends after the end of the
stop bit of the protected identifier (PID) field. The response starts at the end of stop bit
of the PID field and ends at the after the stop bit of the checksum field.

The inter-byte space is the time between the end of the stop bit of the preceding field
and the start bit of the following byte. The response space is the inter-byte space
between the PID field and the first data field in the data. Both of them must be non-
negative.

Frame

Header Response

Break Sync Protected Data 1 Data 2 Data N Checksum
identifier

Response space

Inter-byte space Inter-byte spaces

field field
field

Figure 2.3: The structure of a frame.

Each byte field, except the break field, is transmitted as the byte field shown in Figure
2.4. The LSB of the data is sent first and the MSB last. The start bit is encoded as a bit
with value zero (dominant) and the stop bit is encoded as a bit with value one (reces-
sive).
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 30

Frame Transfer
Byte field

LSB
(bit 0)

MSB
(bit 7)

Start
bit

Stop
bit

Figure 2.4: Structure of a byte field.

2.3.1.1 Break field

The break field is used to signal the beginning of a new frame. It is the only field that
does not comply with Figure 2.4. A break field is always generated by the master task
(in the master node) and it shall be at least 13 nominal bit times of dominant value, fol-
lowed by a break delimiter, as shown in Figure 2.5. The break delimiter shall be at
least one nominal bit time long1.

A slave node shall use a break detection threshold of 11 dominant local slave bit
times. Slave nodes with a bit rate tolerance better than FTOL_RES_SLAVE, see section
6.3, (typically a crystal or ceramic resonator) may use a 9.5 dominant nominal bit
times break detection threshold. It is not required that a slave node checks that the
break delimiter is at least one nominal bit time long.

Break
delimiter

Break

Figure 2.5: The break field

2.3.1.2 Sync byte field

Sync is a byte field with the data value 0x55, as shown in Figure 2.6.

Start
bit

Stop
bit

Figure 2.6: The sync byte field.

A slave task shall always be able to detect the break/sync field sequence, even if it
expects a byte field (assuming the byte fields are separated from each other). A
desired, but not required, feature is to detect the break/sync field sequence even if the

Note 1: An UART can only handle complete bits, so it can occur on the physical layer that the
break delimiter is shorter than one bit time. It is recommend using delimiter that is longer than
one nominal bit-time.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 31

Frame Transfer
break is partially superimposed with a data byte. When a break/sync field sequence
happens, the transfer in progress shall be aborted and processing of the new frame
shall commence.

2.3.1.3 Protected identifier field

A protected identifier field consists of two sub-fields; the frame identifier and the parity.
Bits 0 to 5 are the frame identifier and bits 6 and 7 are the parity.

Frame identifier
Six bits are reserved for the frame identifier, values in the range 0 to 63 can be used.
The frame identifiers are split in three categories:

• Values 0 to 59 (0x3B) are used for signal carrying frames,

• 60 (0x3C) and 61 (0x3D) are used to carry diagnostic and configuration data,

• 62 (0x3E) and 63 (0x3F) are reserved for future protocol enhancements.

Parity
The parity is calculated on the frame identifier bits as shown in equations (1) and (2):

P0 = ID0  ID1  ID2  ID4 (1)

P1 = (ID1  ID3  ID4  ID5) (2)

Mapping
The mapping of the bits (ID0 to ID5 and P0 and P1) is shown in Figure 2.7.

Start
bit

Stop
bitID0 ID1 ID2 ID3 ID4 ID5 P0 P1

Figure 2.7: Mapping of frame identifier and parity to the protected identifier byte field.

2.3.1.4 Data

A frame carries between one and eight bytes of data. The number of data contained in
a frame with a specific frame identifier shall be agreed by the publisher and all sub-
scribers. A data byte is transmitted as part of a byte field, see Figure 2.4.

For data entities longer than one byte, the entity LSB is contained in the byte sent first
and the entity MSB in the byte sent last (little-endian). The data fields are labeled data
1, data 2,... up to maximum data 8, see Figure 2.8.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 32

Frame Transfer
Data 1 Data 2 Data 3 Data 5 Data 6 Data 7Data 4 Data 8

Figure 2.8: Numbering of the data bytes in a frame with eight data bytes.

2.3.1.5 Checksum

The last field of a frame is the checksum. The checksum contains the inverted eight bit
sum with carry over all data bytes or all data bytes and the protected identifier. Check-
sum calculation over the data bytes only is called classic checksum and it is used for
the master request frame, slave response frame and communication with LIN 1.x
slaves.

Eight bit sum with carry is equivalent to sum all values and subtract 255 every time the
sum is greater or equal to 256. See section 2.8.3 for examples how to calculate the
checksum.

Checksum calculation over the data bytes and the protected identifier byte is called
enhanced checksum and it is used for communication with LIN 2.x slaves.

The checksum is transmitted in a byte field, see Figure 2.4.

Use of classic or enhanced checksum is managed by the master node and it is deter-
mined per frame identifier; classic in communication with LIN 1.x slave nodes and
enhanced in communication with LIN 2.x slave nodes.

Frame identifiers 60 (0x3C) to 61 (0x3D) shall always use classic checksum.

2.3.2 FRAME LENGTH

The nominal value for transmission of a frame exactly matches the number of bits sent
(no response space and no inter-byte spaces). The nominal break field is 14 nominal
bits long (break is 13 nominal bits and break delimiter is 1 nominal bit). Therefore:

THeader_Nominal = 34 * TBit (3)

TResponse_Nominal = 10 * (NData + 1) * TBit (4)

TFrame_Nominal = THeader_Nominal + TResponse_Nominal (5)

where TBit is the nominal time required to transmit a bit, as defined in section 6.3.

The break field is 14 nominal bits or longer, see section 2.3.1.1. This means that
THeader_Maximum puts a requirement on the maximum length of the break field.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 33

Frame Transfer
The maximum space between the bytes is additional 40% duration compared to the
nominal transmission time. The additional duration is split between the header (the
master task) and the frame response (a slave task). This yields:

THeader_Maximum = 1.4 * THeader_Nominal (6)

TResponse_Maximum = 1.4 * TResponse_Nominal (7)

TFrame_Maximum = THeader_Maximum + TResponse_Maximum (8)

The maximum length of the header, response and frame is based on the nominal time
for a frame (based on the FNom as defined in section 6.3). Therefore the bit tolerances
are included in the maximum length.

Example: A master node that is 0.5% slower than FNom will have to be within
1.4*THeader_Nominal.

All subscribing nodes shall be able to receive a frame that has a zero overhead, i.e.
that is TFrame_Nominal long.

Tools and tests shall check the TFrame_Maximum. Nodes shall not check this time. The
receiving node of the frame shall accept the frame up to the next frame slot (i.e. next
break field), even if it is longer then TFrame_Maximum.

2.3.3 FRAME TYPES

The frame type refers to the pre-conditions that shall be valid to transmit the frame.
Some of the frame types are only used for specific purposes, which will also be
defined in the following subsections. Note that a node or a cluster does not have to
support all frame types specified in this section.

All bits not used/defined in a frame shall be recessive (ones).

2.3.3.1 Unconditional frame

Unconditional frames carry signals and their frame identifiers are in the range 0 (zero)
to 59 (0x3B).

The header of an unconditional frame is always transmitted when a frame slot allo-
cated to the unconditional frame is processed (by the master task). The publisher of
the unconditional frame (the slave task) shall always provide the response to the
header. All subscribers of the unconditional frame shall receive the frame and make it
available to the application (assuming no errors were detected).

Figure 2.9 shows a sequence of three unconditional frames. A transfer is always initi-
ated by the master. It has a single publisher and one or multiple subscribers.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 34

Frame Transfer
Master Slave 2

ID=0x30

Master sends a frame to both slaves

Slave 1

ID=0x31

Master requests a frame from Slave 1

Slave 2 sends a frame to Slave 1ID=0x32

Figure 2.9: Three unconditional frame transfers.

2.3.3.2 Event triggered frame

The purpose of an event triggered frame is to increase the responsitivity of the LIN
cluster without assigning too much of the bus bandwidth to the polling of multiple slave
nodes with seldom occurring events.

All subscribers of the event triggered frame shall receive the frame and use its data (if
the checksum is validated) as if the associated unconditional frame was received.

If the unconditional frame associated with an event triggered frame is scheduled as an
unconditional frame the response shall always be transmitted (i.e. behave as a sched-
uled unconditional frame).

Uncoditional frames associated with the event triggered frame
Event triggered frames carry the response of one or more unconditional frames.

The unconditional frames associated with an event triggered frame shall:

• Have equal length.

• Use the same checksum model (i.e. mixing LIN 1.x and LIN 2.x frames is not
allowed).

• Reserve the first data field to its protected identifier (even if the associated
unconditional frame is scheduled as a unconditional frame in the same or
another schedule table).

• Be published by different slave nodes.

• Shall not be included directly in the same schedule table as the event
triggered frame is scheduled.

Transmission of the event triggered frame
The header of an event triggered frame is transmitted when a frame slot allocated to
the event triggered frame is processed. The publisher of an associated unconditional
frame shall only transmit the response if at least one of the signals carried in its
unconditional frame is updated. If the response is successfully transmitted, the signal
is no longer considered to be updated.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 35

Frame Transfer
If none of the slave nodes respond to the header, the rest of the frame slot is silent
and the header is ignored.

If more than one slave node responds to the header in the same frame slot, a collision
will occur.

Collision resolving
The master node has to resolve the collision in a collision resolving schedule table.
Each event triggered frame has an associated collision resolving schedule table. The
switch to the collision resolving schedule is made automatically by the driver in the
master node (i.e. not by the application). The collision resolving schedule will be acti-
vated at the start of the subsequent frame slot after the collision.

At least all the associated unconditional frames shall be listed in this collision resolv-
ing schedule table. The collision resolving schedule may contain other unconditional
frames than the associated frames. These other unconditional frames may be of dif-
ferent length.

After the collision schedule table has been processed once, the driver in the master
node shall switch back to the previous schedule table. It shall continue with the sched-
ule entry subsequent to the schedule entry where the collision occurred (or first
schedule entry in case the collision occurred in the last entry).

If one of the colliding slave nodes withdraws without corrupting the transfer, the mas-
ter node will not detect this. A slave node that has withdrawn its response must there-
fore retry transmitting its response until successful, otherwise the response will be
lost.

In case the master node application switches the schedule table before the collision is
resolved, the collision resolving is lost. The new schedule table is activated as
described in section 2.4.3. Note that the colliding slave nodes will still have their
responses pending for transmission.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 36

Frame Transfer
Example 1
A schedule table contains only one event-triggered frame (ID=0x10). The event-trig-
gered frame is associated with two unconditional frames from slave 1 (ID=0x11) and
slave 2 (ID=0x12). The collision resolving schedule table contains the two uncondi-
tional frames. See Figure 2.10 for the behavior on the bus.

Master Slave 2

ID=0x10

Frame from slave 2 is requested

None of the slave nodes has a new response to send

Slave 1

ID=0x12

Request for event triggered frame cause a collision,

Frame from slave 1 is requested
ID=0x11

ID=0x10
One of the slave nodes has a new response

ID=0x10

Automatic switch to collision resolving schedule table

Automatic switch back to normal schedule table

because both slave 1 and slave 2 responded

Figure 2.10: Event-triggered frame example.

Example 2
A typical use for the event triggered frame is to monitor the door knobs in a four door
central locking system. By using an event triggered frame to poll all four doors the sys-
tem shows good response times, while still minimizing the bus load. In the rare occa-
sion that multiple passengers press a knob each, the system will not lose any of the
pushes, but it will take some additional time.

2.3.3.3 Sporadic frame

The purpose of sporadic frames is to blend some dynamic behavior into the determin-
istic and real-time focused schedule table without losing the determinism in the rest of
the schedule table.

A sporadic frame is a group of unconditional frames that share the same frame slot.
When the sporadic frame is due for transmission the unconditional frames are
checked if they have any updated signals. If no signals are updated, no frame will be
transmitted and the frame slot will be empty. If one signal (or more signals packed in
the same frame) has been updated, the corresponding frame will be transmitted. If
more than one signal (packed in different frames) has been updated the highest prior-
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 37

Frame Transfer
itized (see below) frame will be transmitted. The candidate frames not transmitted will
not be lost. They will be candidates to be transmitted every time the sporadic frame is
due, as long as they have not been transmitted.

If the unconditional frame was successfully transmitted, the unconditional frame shall
no longer be pending for transmission until a signal is updated in the unconditional
frame again.

Normally multiple sporadic frames are associated with the same frame slot, the most
prioritized of the pending unconditional frames shall be transmitted in the frame slot. If
none of the unconditional frames is pending for transmission the frame slot shall be
silent. How the sporadic frames are prioritized is described in Configuration Language
Specification, section 9.2.4.2.

The master node is the only publisher of the uncoditional frames in a sporadic frame.
Therefore only the master task knows when an unconditional frame is pending for
transmission.

Example
A sporadic frame is the only frame in the active schedule table. The sporadic frame
has a number of associated unconditional frames, where one has ID 0x22. Normally
sporadic frame slots are empty. In the second slot, see Figure 2.11, at least one signal
of the associated frame with ID 0x22 is updated.

Master Slave

The associated frame 0x22 has an updated signal andID=0x22

Master has nothing to send

is sent by the master

Something happens that
updates a signal in frame
0x22

Figure 2.11: Sporadic frame example

An unconditional frame associated with a sporadic frame may not be allocated in the
same schedule table as the sporadic frame.

2.3.3.4 Diagnostic frames

Diagnostic frames always carry transport layer, see Transport Layer Specification,
data and they always contain eight data bytes. The frame identifier is either 60 (0x3C),
called master request frame, or 61 (0x3D), called slave response frame. The interpre-
tation of the data is given in Node configuration and Identification Specification and
Diagnostic specification.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 38

Frame Transfer
Before transmitting a master request frame, the master task queries its diagnostic
module if it shall be transmitted or if the bus shall be silent. A slave response frame
header shall be sent unconditionally.

The slave tasks publish and subscribe to the response according to their diagnostic
modules.

2.3.3.5 Reserved frames

Reserved frames shall not be used in a LIN 2.x cluster. Their frame identifier are 62
(0x3E) and 63 (0x3F).
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 39

Schedule tables
2.4 SCHEDULE TABLES
A key property of the LIN protocol is the use of schedule tables. Schedule tables make
it possible to assure that the bus will never be overloaded. They are also the key com-
ponent to guarantee the periodicy of signals.

Deterministic behavior is made possible by the fact that all transfers in a LIN cluster
are initiated by the master task. It is the responsibility of the master node to assure
that all frames relevant in a mode of operation are given enough time to be trans-
ferred.

This section identifies all requirements that a schedule table shall adhere. The ratio-
nale for most of the requirements are to provide a conflict-free standard or to provide
for a simple and efficient implementation of the LIN protocol.

2.4.1 TIME DEFINITIONS

The minimum time unit that is used in a LIN cluster is the time base (Tbase). The time
base is implemented in the master node and is used to control the timing of the sched-
ule table. This means that the timing for the frames in a schedule table is based upon
the time base. Usually a time base is 5 or 10 ms.

The starting point of the time base is defined as the time base tick. A frame slot always
start at a time base tick.

The jitter, see Figure 2.12, specifies the differences between the maximum and mini-
mum delay from time base tick to the header sending start point (falling edge of break
field).

The inter-frame space, see Figure 2.12, is the time from the end of the frame until start
of the next frame. The inter-frame space must be non-negative.

2.4.2 FRAME SLOT

The TFrame_Slot (9) is the time that is controlling the schedule table timing. It is the time
from when a schedule table entry is due (a frame transmission will be initiated) until
the subsequent schedule entry is due. It is defined as a integer multiple of the time
base. The integer multiple is normally different for each frame slot.

TFrame_Slot = Tbase * n (9)

A frame slot (9) must have a duration (10) long enough to allow for the jitter introduced
by the master task and the TFrame_Maximum defined in equation (8).

TFrame_Slot > jitter + TFrame_Maximum (10)
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 40

Schedule tables
TFrame_Maximum

Break Sync Protected Data 1 Data 2 Data N Checksum
identifier

TFrame_Slot

jitter Inter-frame space

field field
field

Figure 2.12: Frame slot

2.4.3 SCHEDULE TABLE HANDLING

The active schedule table shall be processed until another requested schedule table
is selected. When the end of the current schedule is reached, the schedule is started
again at the beginning of the schedule. The actual switch to the new schedule is made
at start of a frame slot. This means that a schedule table switch request will not inter-
rupt any ongoing transmission on the bus.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 41

Task Behavior
Model
2.5 TASK BEHAVIOR MODEL
This chapter defines a behavior model for a LIN node. The behavior model is based
on the master task/slave task concept.

2.5.1 MASTER TASK STATE MACHINE

The master task is responsible for generating correct headers, i.e. deciding which
frame shall be sent and for maintaining the correct timing between frames, all accord-
ing to the schedule table. The master task state machine is depicted in Figure 2.13.

Idle

Break

+ Do Action / Send Break

Sync

+ Do Action / Send Sync

PID

+ Do Action / Send PID

Scheduled frame is
due for transportation

Figure 2.13: Complete state machine for the master task.

2.5.2 SLAVE TASK STATE MACHINE

The slave task is responsible for transmitting the frame response when it is the pub-
lisher and for receiving the frame response when it is a subscriber. The slave task is
modelled with two state machines:

• Break/sync field sequence detector

• Frame processor

2.5.2.1 Break/sync field sequence detector

A slave task is required to be synchronized at the beginning of the protected identifier
field of a frame, i.e. it must be able to receive the protected identifier field correctly. It
must stay synchronized within the required bit-rate tolerance throughout the remain-
der of the frame, as specified in section 6.3. For this purpose every frame starts with a
sequence starting with break field followed by a sync byte field. This sequence is
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 42

Task Behavior
Model
unique in the whole LIN communication and provides enough information for any
slave task to detect the beginning of a new frame and to be synchronized at the start
of the identifier field.

2.5.2.2 Frame processor

The frame processing consists of two states: Idle and Active. Active contains five sub-
states. As soon as a break/sync field sequence is received (from any state or sub-
state) the Active state is entered in the PID sub-state. This implies that processing of
one frame will be aborted by the detection of a new break/sync field sequence. The
frame processor state machine is depicted in Figure 2.14.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 43

Task Behavior
Model
Idle

+ Do Action / Receive break and sync

Activ e

+ Do Action / Receive break and sync

PID

+ Do Action / receive PID

Rx data

+ Do Action / Receive data byte

Tx data

+ Do Action / T ransm it data byte

Rx checksum

+ Do Action / Receive checksum

Tx checksum

+ Do Action / T ransm it checksum

Error

Qui t

Success

Success Error

Readback
correct

Al l data bytes received

PID belongs to T x frames

All data bytes transm itted

Checksum
inval id or
fram ing error
/Error

Fram ing
error

Success /Set
Succesful_transfer

Unknown PID
or fram ing error

PID belongs to Rx fram es

Readback not
correct

Checksum val id

Error /Set
Error_in_response

Break/sync field
sequence
received

Break/sync field
sequence received
[last frame response
too short] /Set
response_error

Qui t

Break/sync field sequence
received [No response]

Readback not
correct

c

Figure 2.14: Frame processor state machine.

Error and Success refers to the status management described in section 2.7.

The last frame response too short means that the last frame contained at least one
field (correct data byte or even framing error) in the response. This is to distinguish
between error in response and no response.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 44

Task Behavior
Model
A mismatch between readback and sent data shall be detected not later than after
completion of the byte field containing the mismatch. When a mismatch is detected,
the transmission shall be aborted.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 45

Network
Management
2.6 NETWORK MANAGEMENT
Network management in a LIN cluster refers to cluster wake up and go to sleep only.
Other network management features, e.g. configuration detection and limp home
management are left to the application.

2.6.1 SLAVE COMMUNICATION STATE DIAGRAM

The state diagram in Figure 2.15 shows the behavior model for communication of a
slave node.

Initializing
This state is instantaneously entered after first connection to power source, reset or
wakeup. The slave node will make necessary initialization and then enter the Opera-
tional state. The initialization here refers to the LIN related initialization. A reset and
wakeup may imply different initialization.

Operational
The LIN protocol behavior (transmitting and receiving frames) specified in this docu-
ment only applies to the Operational state.

Bus sleep mode
The level on the bus is set to recessive. Only the wake up signal may be transmitted
on the cluster.

Initializing

OperationalBus sleep mode

Wake up signal received OR
internal reason to wake up
the cluster

Go to sleep request
received OR bus
inactive for 4 to 10 s

Init process finished [< 100 ms]

Figure 2.15: Slave node communication state diagram
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 46

Network
Management
2.6.2 WAKE UP

Any node in a sleeping LIN cluster may request a wake up, by transmitting a wake up
signal. The wake up signal is started by forcing the bus to the dominant state for 250
µs to 5 ms, and is valid with the return of the bus signal to the recessive state. The
master node may issue a break field, e.g. by issuing an ordinary header since the
break will act as a wake up signal (in this case the master must be aware of that this
frame may not be processed by the slave nodes since they may not yet awake and
ready to listen to headers).

Every slave node (connected to power) should detect the wake up signal (a dominant
pulse longer than 150 µs followed by a rising edge of the bus signal) and be ready to
listen to bus commands within 100 ms, measured from the ending edge of the domi-
nant pulse, see Figure 2.16. A detection threshold of 150 µs combined with a 250 µs
pulse generation gives a detection margin that is enough for uncalibrated slave nodes.
If the node that transmitted the wake up signal is a slave node, it will be ready to
receive or transmit frames immediately. The master node shall also wake up and,
when the slave nodes are ready, start transmitting headers to find out the cause
(using signals) of the wake up.

max 100 ms> 150 µs

The slave node is
ready to receive or
transmit framesSlave node is initializing

Figure 2.16: Wake up signal reception in slave nodes

The Master node shall detect the wake up signal (a dominant pulse longer than 150
µs) and be ready to start communication within a time that is decided by the cluster
designer or application specific.

If the master node does not transmit a break field (i.e. starts to transmit a frame) or if
the node issuing the wake up signal does not receive a wake up signal (from another
node) within 150 ms to 250 ms from the wake up signal, the node issuing the wake up
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 47

Network
Management
signal shall transmit a new wake up signal, see Figure 2.17. In case the slave node
transmits a wake up signal in the same time as the master node transmits a break
field, the slave shall receive and recognize this break field.

250 µs - 5 ms 150 ms - 250 ms 250 µs - 5 ms 150 ms - 250 ms 250 µs - 5 ms

Figure 2.17: One block of wake up signals

After three (failing) requests the node shall wait minimum 1.5 seconds before issuing
a fourth wake up signal. The reason for this longer duration is to allow the cluster to
communicate in case the waking slave node has problems, e.g. if the slave node has
problems with reading the bus it will probably retransmit the wake up signal infinitely.

There is no restriction of how many times a slave may transmit the wake up signal.
However, it is recommended that a slave node transmits not more than one block of
three wake up signals for each wake up condition. The Figure 2.18 shows how wake
up signals are transmitted over a longer time

> 1.5 s > 1.5 s > 1.5 s

.

Figure 2.18: Wake up signals over long time

2.6.3 GO TO SLEEP

The master sets the cluster into bus sleep mode by transmitting a go to sleep com-
mand. The request will not necessarily enforce the slave nodes into a low-power
mode. The slave node application may still be active after the go to sleep command
has been received. This behavior is application specific.

The go to sleep command is a master request frame with the first data field set to 0
and rest set to 0xFF, see Table 2.1. The slave nodes shall ignore the data fields 2 to 8
and interpret only the first data field.

Table 2.1: Go to sleep command

data1 data2 data3 data4 data5 data6 data7 data8

0 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 48

Network
Management
The normal way for setting the cluster to sleep is that the master node transmits the
go to sleep command.

In case of bus inactivity a slave node must be able to receive/transmit frames for 4 s.

The slave node shall automatically enter bus sleep mode earliest 4 s and latest 10 s of
bus inactivity. Bus inactivity is defined as no transitions between recessive and domi-
nant bit values2. Bus activity is the inverse.

Note 2: LIN transceivers normally have filters to remove short spikes on the bus. The transition
here refers to the signal after this filter.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 49

Status Management
2.7 STATUS MANAGEMENT
The purpose of status management is to detect errors during operation. The purpose
of detecting errors is twofold:

• to provide means to easily replace faulty units and

• to provide for nodes to enter a limp home mode when problems occur.

In addition to the status management function mandated in this chapter, a node may
provide further detailed error information, although this is not standardized by the
specification.

2.7.1 CONCEPT

Central cluster status management is made in the master node. The master node
monitors status reports from each node and filters/integrates the reports to conclude if
one or more nodes are faulty.

Each node application may also monitor its interaction with the LIN bus. This can be
used to enter a limp home mode, if applicable.

2.7.2 EVENT TRIGGERED FRAMES

Event triggered frames, section 2.3.3.2, are defined to allow collisions. Therefore, a
bus error, e.g. framing error, shall not affect the response_error (it is neither a suc-
cessful transfer, nor an error in response). Of course, if an error in the associated
unconditional frame occurs, this shall be counted as an error.

2.7.3 REPORTING TO THE CLUSTER

The master node will monitor the status on the cluster by checking the behavior of a
specific signal published by all slave nodes.

Each slave node shall publish a one bit scalar signal, named response_error, to the
master node in one of its transmitted unconditional frames. In case the unconditional
frame is associated with an event triggered frame the frame should additionally be
scheduled as unconditional.

The response_error signal shall be set whenever a frame (except for event triggered
frame responses) that is transmitted or received by the slave node contains an error in
the frame response.

The response_error signal shall be cleared when the unconditional frame containing
the response_error signal is successfully transmitted.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 50

Status Management
The response error shall not be set: If the master sends only the MRF header (i.e. no
NAD in the first byte of data). This frame is not considered to be received by any
slave.

Based on this single bit the master node can make the conclusions as presented in
Table 2.2:

response_error Interpretation

false the slave node is operating correctly

true the slave node has intermittent problems

The slave node did not
answer

the slave node, bus or master node has serious
problems

Table 2.2: Interpretation of the response_error
It is the responsibility of the master node application to integrate and filter the individ-
ual status reports as well as to do a synthesis of the reports from different slave
nodes.

The response_error is enough to perform a conformance test of the frame transceiver
(the protocol engine) independent of the application and the signal interaction layer.

A slave node may provide more status information, if desired, but the single
response_error bit shall always be present.

2.7.4 REPORTING WITHIN OWN NODE

This section applies to software based nodes, however ASIC based state machine
implementations are recommended to use the same concepts. See section 7.2.5.8 for
further information of this reporting.

The node provides two status bits for status management within the own node;
error_in_response and successful_transfer. The own node application also receives
the protected identifier of the last frame recognized by the node.

Error_in_response is set whenever a frame received by the node or a frame
transmitted by the node contains an error in the response field, i.e. by the
same condition as will set the response_error signal. It shall not be set in case
there is no response.

Successful_transfer shall be set when a frame has been successfully trans-
ferred by the node, i.e. a frame has either been received or transmitted.

The reporting within the own node is standardized in the Application Program Inter-
face Specification and can be used to automatically generate applications that per-
form an automatic conformance test of the complete LIN driver module, including the
signal interaction layer.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 51

Status Management
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 52

Appendices
2.8 APPENDICES

2.8.1 TABLE OF NUMERICAL PROPERTIES

Table 2.3: Defined numerical properties

Property Min Max Unit Reference

Scalar signal size 1 16 bit section 2.2.1

Byte array size 1 8 byte section 2.2.1

Break field length (dominant + delimiter) 14 Tbit section 2.3.1.1

Break detect threshold 11 11 Tbit section 2.3.1.1

Wake up signal duration 0.25 5 ms section 2.6.2

Slave initialize time 100 ms section 2.6.2

Silence period between wake up signals 150 250 ms section 2.6.2

Silence period after three wake up signals 1.5 s section 2.6.2
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 53

Appendices
2.8.2 TABLE OF VALID FRAME IDENTIFIERS

ID[0..5]
Dec Hex

P0 =
ID0ID1ID2ID4

P1 = 
ID1ID3ID4ID5

PID-Field
P1 P0 5 4 3 2 1 0

PID-Field
Dec Hex

0 0x00 0 1 1 0 0 0 0 0 0 0 128 0x80

1 0x01 1 1 1 1 0 0 0 0 0 1 193 0xC1

2 0x02 1 0 0 1 0 0 0 0 1 0 66 0x42

3 0x03 0 0 0 0 0 0 0 0 1 1 3 0x03

4 0x04 1 1 1 1 0 0 0 1 0 0 196 0xC4

5 0x05 0 1 1 0 0 0 0 1 0 1 133 0x85

6 0x06 0 0 0 0 0 0 0 1 1 0 6 0x06

7 0x07 1 0 0 1 0 0 0 1 1 1 71 0x47

8 0x08 0 0 0 0 0 0 1 0 0 0 8 0x08

9 0x09 1 0 0 1 0 0 1 0 0 1 73 0x49

10 0x0A 1 1 1 1 0 0 1 0 1 0 202 0xCA

11 0x0B 0 1 1 0 0 0 1 0 1 1 139 0x8B

12 0x0C 1 0 0 1 0 0 1 1 0 0 76 0x4C

13 0x0D 0 0 0 0 0 0 1 1 0 1 13 0x0D

14 0x0E 0 1 1 0 0 0 1 1 1 0 142 0x8E

15 0x0F 1 1 1 1 0 0 1 1 1 1 207 0xCF

16 0x10 1 0 0 1 0 1 0 0 0 0 80 0x50

17 0x11 0 0 0 0 0 1 0 0 0 1 17 0x11

18 0x12 0 1 1 0 0 1 0 0 1 0 146 0x92

19 0x13 1 1 1 1 0 1 0 0 1 1 211 0xD3

20 0x14 0 0 0 0 0 1 0 1 0 0 20 0x14

21 0x15 1 0 0 1 0 1 0 1 0 1 85 0x55

22 0x16 1 1 1 1 0 1 0 1 1 0 214 0xD6

23 0x17 0 1 1 0 0 1 0 1 1 1 151 0x97

24 0x18 1 1 1 1 0 1 1 0 0 0 216 0xD8

25 0x19 0 1 1 0 0 1 1 0 0 1 153 0x99

26 0x1A 0 0 0 0 0 1 1 0 1 0 26 0x1A

27 0x1B 1 0 0 1 0 1 1 0 1 1 91 0x5B

28 0x1C 0 1 1 0 0 1 1 1 0 0 156 0x9C

29 0x1D 1 1 1 1 0 1 1 1 0 1 221 0xDD

30 0x1E 1 0 0 1 0 1 1 1 1 0 94 0x5E

31 0x1F 0 0 0 0 0 1 1 1 1 1 31 0x1F

32 0x20 0 0 0 0 1 0 0 0 0 0 32 0x20

33 0x21 1 0 0 1 1 0 0 0 0 1 97 0x61

34 0x22 1 1 1 1 1 0 0 0 1 0 226 0xE2

35 0x23 0 1 1 0 1 0 0 0 1 1 163 0xA3

36 0x24 1 0 0 1 1 0 0 1 0 0 100 0x64

37 0x25 0 0 0 0 1 0 0 1 0 1 37 0x25
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 54

Appendices
Table 2.4: Valid frame identifiers

38 0x26 0 1 1 0 1 0 0 1 1 0 166 0xA6

39 0x27 1 1 1 1 1 0 0 1 1 1 231 0xE7

40 0x28 0 1 1 0 1 0 1 0 0 0 168 0xA8

41 0x29 1 1 1 1 1 0 1 0 0 1 233 0xE9

42 0x2A 1 0 0 1 1 0 1 0 1 0 106 0x6A

43 0x2B 0 0 0 0 1 0 1 0 1 1 43 0x2B

44 0x2C 1 1 1 1 1 0 1 1 0 0 236 0xEC

45 0x2D 0 1 1 0 1 0 1 1 0 1 173 0xAD

46 0x2E 0 0 0 0 1 0 1 1 1 0 46 0x2E

47 0x2F 1 0 0 1 1 0 1 1 1 1 111 0x6F

48 0x30 1 1 1 1 1 1 0 0 0 0 240 0xF0

49 0x31 0 1 1 0 1 1 0 0 0 1 177 0xB1

50 0x32 0 0 0 0 1 1 0 0 1 0 50 0x32

51 0x33 1 0 0 1 1 1 0 0 1 1 115 0x73

52 0x34 0 1 1 0 1 1 0 1 0 0 180 0xB4

53 0x35 1 1 1 1 1 1 0 1 0 1 245 0xF5

54 0x36 1 0 0 1 1 1 0 1 1 0 118 0x76

55 0x37 0 0 0 0 1 1 0 1 1 1 55 0x37

56 0x38 1 0 0 1 1 1 1 0 0 0 120 0x78

57 0x39 0 0 0 0 1 1 1 0 0 1 57 0x39

58 0x3A 0 1 1 0 1 1 1 0 1 0 186 0xBA

59 0x3B 1 1 1 1 1 1 1 0 1 1 251 0xFB

60a 0x3C 0 0 0 0 1 1 1 1 0 0 60 0x3C

61b 0x3D 1 0 0 1 1 1 1 1 0 1 125 0x7D

62c 0x3E 1 1 1 1 1 1 1 1 1 0 254 0xFE

63c 0x3F 0 1 1 0 1 1 1 1 1 1 191 0xBF

a. Frame identifier 60 (0x3C) is reserved for the Master Request frame (see section
2.3.3.4).

b. Frame identifier 61 (0x3D) is reserved for the Slave Response frame (see section
2.3.3.4).

c. Frame identifier 62 (0x3E) and 63 (0x3F) are reserved for a future LIN extended format
(see section 2.3.3.5).

ID[0..5]
Dec Hex

P0 =
ID0ID1ID2ID4

P1 = 
ID1ID3ID4ID5

PID-Field
P1 P0 5 4 3 2 1 0

PID-Field
Dec Hex
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 55

Appendices
2.8.3 EXAMPLE OF CHECKSUM CALCULATION

Below is the checksum calculation of four bytes shown. If the frame have four data
bytes or the protected identifier and three data bytes; the calculation is the same. Data
= 0x4A, 0x55, 0x93, 0xE5

Action hex Carry D7 D6 D5 D4 D3 D2 D1 D0

0x4A 0x4A 0 1 0 0 1 0 1 0

+0x55 = 0x9F 0 1 0 0 1 1 1 1 1

(Add Carry) 0x9F 1 0 0 1 1 1 1 1

+0x93 = 0x132 1 0 0 1 1 0 0 1 0

Add Carry 0x33 0 0 1 1 0 0 1 1

+0xE5 = 0x118 1 0 0 0 1 1 0 0 0

Add Carry 0x19 0 0 0 1 1 0 0 1

Invert 0xE6 1 1 1 0 0 1 1 0

0x19+0xE6 = 0xFF 1 1 1 1 1 1 1 1

Table 2.5: Example of checksum calculation
The resulting sum is 0x19. Inversion yields the final result: checksum = 0xE6.

The receiving node can easily check the consistency of the received frame by using
the same addition mechanism. When the received checksum (0xE6) is added to the
intermediate result (0x19) the sum shall be 0xFF.
Website: www.lin-subbus.org

LIN Protocol Specification
Revision 2.2A

December 31, 2010; Page 56

Appendices
2.8.4 SYNTAX AND MATHEMATICAL SYMBOLS USED IN THIS STANDARD

Sequence diagrams
To visualize the implications of the standard, sequence diagrams are used when
appropriate. The syntax used in these diagrams are exemplified in Figure 2.19. The
shaded areas represent the frame slots (with gaps added to clarify the drawing). Dot-
ted/hollow arrows represent the headers and solid arrows represent responses

Master Slave2

ID=0x22

ID=0x17 A header that nobody responded to

A silent frame slot (master did not transmit the header)

Slave1

ID=0x10

A frame published by the master and subscribed to

A frame that slave2 responded to, i.e. published and

by both slave1 and slave2

the master subscribed to

.

Figure 2.19: Frame sequence example.

Mathematical symbols
The following mathematical symbols and notations are used in this standard:

f S Belongs to. True if f is in the set S.
a b Exclusive or. True if exactly one of a or b is true.
a Negate. True if a is false.
Website: www.lin-subbus.org

LIN Transport Layer Spec
Revision 2.2A

December 31, 2010; Page 57
LIN
 Transport Layer Specification

Revision 2.2A

© LIN Consortium, 2010.

This specification as released by the LIN Consortium is intended for the purpose of
information only and is provided on an "AS IS" basis only and cannot be the basis for
any claims. The LIN Consortium will not be liable for any use of this Specification. The
unauthorized use, e.g. copying, displaying or other use of any content from this docu-
ment is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®. All rights reserved.
All distributions are registered.
Website: www.lin-subbus.org

LIN Transport Layer Spec
Revision 2.2A

December 31, 2010; Page 58

Introduction
3.1 INTRODUCTION
The transport layer defines transportation of data that is contained in one or more
frames.

The transport layer messages are transported by diagnostic frames as specified in the
Protocol Specification. A standardized API for the transport layer is specified in the
Application Program Interface Specification.
Website: www.lin-subbus.org

LIN Transport Layer Spec
Revision 2.2A

December 31, 2010; Page 59

Transport layer
3.2 TRANSPORT LAYER
Use of the transport layer is targeting systems where diagnostics are performed on
the back-bone bus (e.g. CAN) and where the system builder wants to use the same
diagnostic capabilities on the LIN sub-bus clusters. The messages are in fact identical
to the ISO 15765-2 transport layer [2] and the PDUs carrying the messages are very
similar, as defined in Section 3.2.1. A typical system configuration is shown in Figure
3.1.

The goals of the transport layer are:

• Low load on master.

• Providing full (or a subset thereof) diagnostics directly on the LIN slaves.

• Targeting clusters built with powerful nodes (not the mainstream low-cost
LIN).

back-bone bus

LIN cluster

Master

Tester

Slave1 Slave2

Figure 3.1: Typical system setup for a LIN cluster using the transport layer.

3.2.1 PDU STRUCTURE

The units that are transported in a transport layer frame are called PDU (Packet Data
Unit). A PDU can be a complete message or a part of a message; in the latter case,
multiple concatenated PDUs form the complete message.

Messages issued by the client (tester, master node) are called requests and mes-
sages issued by the server (master node, slave node) are called responses.

The first byte in the pay-load is used as an node address (NAD). The transport layer
frames have fixed frame IDs, since the diagnostic frames are used. This means that
the addressing of a node (or function) is made using the NAD. In ISO 15765-2 trans-
port layer [2] terms this means that the extended or mixed addressing are used.
Website: www.lin-subbus.org

LIN Transport Layer Spec
Revision 2.2A

December 31, 2010; Page 60

Transport layer
Flow control [2] is not used in LIN clusters. If the back-bone bus test equipment needs
flow control PDUs, these must be generated by the master node on the back-bone
side.

3.2.1.1 Overview

To simplify conversion between ISO transport layer frames [2] and LIN transport layer
frames a very similar structure is defined, which support the PDU types shown in Fig-
ure 3.2. The left byte (NAD) is sent first and the right byte (D4, D5 or D6) is sent last.

NAD PCI SID D1 D2 D3 D4

NAD PCI LEN SID D1 D2 D3 D4

D5 PCI-type = SF

PCI-type = FF

PCI-type = CF

NAD PCI LEN RSID D1 D2 D3 D4

NAD PCI D1 D2 D3 D4 D5

PCI-type = SF

PCI-type = FF

D6

NAD PCI RSID D1 D2 D3 D4 D5

Request

Response

Figure 3.2: PDUs supported by the LIN transport layer.

Requests are always sent in master request frames and responses are always sent in
slave response frames. The meaning of each byte in the PDUs is defined in the fol-
lowing sections.

3.2.1.2 NAD

The NAD is defined in Section 4.2.3.2.

3.2.1.3 PCI

The PCI (Protocol Control Information) contains the transport layer flow control infor-
mation. Three interpretations of the PCI byte exist, as defined in Table 3.1.

Table 3.1: Structure of the PCI byte.

Type PCI type Additional information

B7 B6 B5 B4 B3 B2 B1 B0

SF 0 0 0 0 Length

FF 0 0 0 1 Length/256

CF 0 0 1 0 Frame counter
Website: www.lin-subbus.org

LIN Transport Layer Spec
Revision 2.2A

December 31, 2010; Page 61

Transport layer
The PCI type Single Frame (SF) indicates that the transported message fits into the
single PDU, i.e. it contains at maximum five data bytes. The length shall then be set to
the number of used data bytes plus one (for the SID or RSID).

The PCI type First Frame (FF) is used to indicate the start of a multi PDU message;
the following frames are of CF type, see below. The total number of data bytes in the
message plus one (for the SID or RSID) shall be transmitted as Length: The four most
significant bits of Length is transmitted in the PCI byte (the eight least significant bits
are sent in LEN, see below).

A multi-PDU message is continued with a number of Consecutive Frames (CF). The
first CF frame of a message is numbered 1, the second 2 and so on. If more than 15
CF PDUs are needed to transport the complete message, the frame counter wraps
around and continues with 0, 1,...

3.2.1.4 LEN

A LEN byte is only used in FF; it contains the eight least significant bits of the mes-
sage length. Thus, the maximum length of a message is 4095 (0xFFF) bytes.

3.2.1.5 SID

The Service Identifier (SID) specifies the request that shall be performed by the slave
node addressed. 0 to 0xAF and 0xB8 to 0xFE are used for diagnostics while 0xB0 to
0xB7 are used for node configuration.

The Response Service Identifier (RSID) specifies the contents of the response.

3.2.1.6 D1 to D6

The interpretation of the data bytes (up to six in a single PDU) depends on the SID or
RSID. In multi-PDU messages, all the bytes in all PDUs of the message shall be con-
catenated into a complete message, before being parsed.

If a PDU is not completely filled (applies to CF and SF PDUs only) the unused bytes
shall be filled with ones, i.e. their value shall be 255 (0xFF).

3.2.2 COMMUNICATION

It is required that a transport layer message is exclusive on one bus. This means that
only one message can be active at one time.

If a node is receives a message with a NAD equal to the node’s own NAD or the
broadcast NAD and no other message is active the message shall be received and
processed.
Website: www.lin-subbus.org

LIN Transport Layer Spec
Revision 2.2A

December 31, 2010; Page 62

Transport layer
If a functional addressed message is received and no other message is active the
message shall be received and processed.

Functional addressed messages shall be ignored by slave nodes while receiving a
message.

The slave node shall abort processing of a transport layer message after:

• Reception of a valid master request (except when NAD is the functional NAD)

• Reception of a master request that is valid concerning the LIN protocol, but
with absurd data, e.g. wrong PCI (except when NAD is the functional NAD)

The slave node shall proceed with a transport layer message after:

• Reception of an invalid master request (failure in Header, checksum error,
framing error)

3.2.2.1 Single Frame Transmission

Transmission of messages up to six bytes (including SID) shall be performed via
transmission of a single frame PDU (SF).

Functional addressed messages can only be SF.

3.2.2.2 Multiple Frame Transmission

Transmission of messages with more than six bytes (including SID) up to a maximum
of 4095 bytes is performed via segmentation and transmission of multiple PDUs. A
segmented transmission starts with a First Frame PDU (FF) and continues with multi-
ple Consecutive Frame PDUs (CF).

3.2.3 ERROR HANDLING

A Single Frame PDU (SF) with a length value greater than six (6) bytes shall be
ignored by the receiver.

First Frame PDU (FF) with a length value less than seven (7) bytes shall be ignored
by the receiver.

A First Frame PDU (FF) with a length value greater than the maximum available
receive buffer size of the slave node shall be ignored by the receiver and the receiver
shall not start the reception of a segmented message. This implies of course that the
receiving node is receiving the complete message (the target node) and not a frag-
mented (in case of gateway).

PDUs with unexpected PCI types from any node shall be ignored except Single
Frame (SF) and First Frame PDUs (FF).
Website: www.lin-subbus.org

LIN Transport Layer Spec
Revision 2.2A

December 31, 2010; Page 63

Transport layer
After reception of a Single Frame (SF) or First Frame (FF) PDU, with a NAD that is not
equal to the functional NAD, during an ongoing message transmission the current
reception shall be aborted. Reception of the new message shall be started on the
receiver side if the NAD equals the node's own NAD or broadcast NAD.

After reception of a Consecutive Frame (CF) with an unexpected sequence number
(SN) the reception of the message transfer shall be aborted by the receiver.

The message reception shall be aborted by the receiver after occurrence of an N_Cr
timeout.

The message transmission shall be aborted by the transmitter after occurrence of an
N_As timeout, see Section 3.2.5.

3.2.4 DEFINED REQUESTS

The LIN transport layer uses the same diagnostic messages as the ISO 15765-3 diag-
nostics standard [3]. From this follows that SID and RSID shall also be according to
the ISO standard. A node may implement a sub-set of the services defined in the ISO
standard [3].

3.2.5 TIMING CONSTRAINTS

The timing constraints for the transport layer (based on ISO-15765-2 [2]) is shown in
Table 3.2. The properties shall be within a defined range. Since LIN is slower than
CAN, the values have to be adjusted accordingly. These properties are part of the
transport layer and will not have any constraint on the node configuration.

Performance requirement values are the binding communication requirements to be
met by each communication peer in order to be compliant with the specification. Since
the LIN schedules vary with the specific use-case a certain application may define
specific performance requirements within the ranges defined in Table 3.2.
Website: www.lin-subbus.org

LIN Transport Layer Spec
Revision 2.2A

December 31, 2010; Page 64

Transport layer
Timeout values are defined to be higher than the values for the performance require-
ments to ensure a working system and to overcome communication conditions where
the performance requirement can absolutely not be met (e.g. high bus load). Specified
timeout values in Table 3.2 or values given by the node (i.e. the NCF) shall be treated
as the upper limit for any given implementation.

Table 3.2: Transport layer timing parameters

Timing Description Data Link Layer service Timeout Performance

Parameter Start End (ms) requirement (ms)

N_As

Time for transmission
of the LIN frame

(MRF or SRF) on the
transmitter side

When the trans-
port layer

requests a diag-
nostic frame to
be transmitted

When the diag-
nostic frame has
been confirmed
as transmitted

1000 N/A

N_Cs

Time until transmis-
sion of the next Con-
secutive Frame (CF)

When the last
diagnostic frame
in the same mes-
sage has been
confirmed as
transmitted.

When the trans-
port layer

requests the CF
to be transmitted

N/A
(N_Cs + N_As)

<
(0.9 * N_Cr timeout)

N_Cr
Time until reception of
the next Consecutive

Frame (CF)

When the previ-
ous diagnostic

frame in the mes-
sage has been

indicated as
received.

When the next
diagnostic frame
in the message
has been indi-

cated as
received.

1000 -

Note: The N_Cs parameter does not require a timeout monitoring in the transmitting
node since N_As ensures the correct timeout behavior. However N_Cs must be con-
sidered in the system design (scheduling and transmitter software design) so that a
timeout on the receiver's side (N_Cr) can be avoided.
Website: www.lin-subbus.org

LIN Transport Layer Spec
Revision 2.2A

December 31, 2010; Page 65

Transport layer
Figure 3.3 and Figure 3.4 illustrates the parameters in the time domain. The intention
of the figures is to show the transport layer timing parameters, not to require a certain
implementation. The behavior for the master node and the slave node in the lower lay-
ers are generalized.

Driver Bus

N_Cs

N_As

time

Transport layer

Request transmission
of diagnostic frame (SF, FF or CF)

Start frame transmission

Diagnostic frame

Frame transmitted

Request transmission of
next diagnostic frame (CF)

timetime

Transmission confirmation

(MRF or SRF)

Figure 3.3: Transport layer timing on transmitter side

Driver Bus

N_Cr

time

Transport layer

frame received

Diagnostic frame

timetime

Diagnostic frame

frame received

diagnostic frame (FF or CF)

diagnostic frame (CF)

reception indication

reception indication

(MRF or SRF)

(MRF or SRF)

Figure 3.4: Transport layer timing on receiver side
Website: www.lin-subbus.org

LIN Config and ID Spec
Revision 2.2A

December 31, 2010; Page 66
LIN
 Node configuration and Identification

Specification

Revision 2.2A

© LIN Consortium, 2010.

This specification as released by the LIN Consortium is intended for the purpose of
information only and is provided on an "AS IS" basis only and cannot be the basis for
any claims. The LIN Consortium will not be liable for any use of this Specification. The
unauthorized use, e.g. copying, displaying or other use of any content from this docu-
ment is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®. All rights reserved.
All distributions are registered.
Website: www.lin-subbus.org

LIN Config and ID Spec
Revision 2.2A

December 31, 2010; Page 67

Introduction
4.1 INTRODUCTION
The node configuration and identification services define how a slave node is config-
ured, and identifying a slave node using the identification service.

The node configuration and identification services are transported by the transport
layer as specified in the Transport Layer Specification. A standardized API for the
node configuration and identification is specified in the Application Program Interface
Specification.
Website: www.lin-subbus.org

LIN Config and ID Spec
Revision 2.2A

December 31, 2010; Page 68

Node configuration
and identification
4.2 NODE CONFIGURATION AND IDENTIFICATION
Node configuration is used to set up slave nodes in a cluster. It is a set of services to
avoid conflicts between slave nodes within a cluster built out of off-the-shelf slave
nodes. Identification is used to identify a slave node.

Node configuration is done by having a address space, consisting of a LIN Product
Identification and an initial NAD per slave node. Using these values it is possible to
map unique frame identifiers to all frames transported in the cluster.

4.2.1 LIN PRODUCT IDENTIFICATION

Each slave node shall have a LIN product identification, as outlined in Table 4.1.

Table 4.1: LIN product identification

D1 D2 D3 D4 D5

Supplier ID
LSB

Supplier ID
MSB

Function ID
LSB

Function ID
MSB

Variant ID

t

The supplier ID is a 16 bit value, with the most significant bit equal to zero. Most signif-
icant bit set to one is reserved for future extended numbering systems. The supplier
ID is assigned to each supplier by the LIN Consortium. The supplier ID shall represent
the supplier of the fully operational slave node.

The function ID is a 16 bit value assigned by each supplier. If two products differ in
function, i.e. LIN communication or physical world interaction, their function ID shall
differ. For absolutely equal function, however, the function ID shall remain unchanged.

The variant ID is an 8 bit value. It shall be changed whenever the product is changed
but with unaltered function. The variant ID is a property of the slave node and not the
LIN cluster.

A slave node may have a serial number to identify a specific instance of a slave node
product. The serial number is 4 bytes, as outlined in Table 4.2.

Table 4.2: Serial number

D1 D2 D3 D4

LSB MSB

t

4.2.1.1 Wildcards

To be able to leave some information unspecified the wildcard values in Table 4.3 may
be used in node configuration requests. All slave nodes shall understand the wild-
cards in requests.
Website: www.lin-subbus.org

LIN Config and ID Spec
Revision 2.2A

December 31, 2010; Page 69

Node configuration
and identification
Table 4.3: Wildcards usable in all requests

Property Wildcard value

NAD 0x7F

Supplier ID 0x7FFF

Function ID 0xFFFF

4.2.2 SLAVE NODE MODEL

The memory of a slave node can be described as in Figure 4.1.

ROM

VRAM

NAD

Supplier ID

e.g. pin configuration

Initial NAD PIDs

Serial number

Function ID Variant
NAD PIDs

ROM or NVRAM

ld_set_configuration

Instance generation

Configuration from
master node, over the bus

Figure 4.1: Slave node memory model.

VRAM (Volatile RAM) is considered a memory that is not valid after reset. The
NVRAM (Non-Volatile RAM) is memory that is maintained after reset and can be mod-
ified with internal processes (e.g. the application). ROM (Read Only Memory) is con-
sidered as constant memory that cannot be modified with internal processes (e.g.
application).

A slave node has a fixed LIN Product Identification, see Section 4.2.1. The serial num-
ber is optional.
Website: www.lin-subbus.org

LIN Config and ID Spec
Revision 2.2A

December 31, 2010; Page 70

Node configuration
and identification
Three slave node variants are defined:

• Unconfigured slave node - After reset the slave node does not contain a valid
configuration. The slave node must be configured by the master after reset,
because the configuration is stored in VRAM.

• Preconfigured slave node - This slave node has a valid configuration after
reset (after l_ifc_init is called). The configuration is normally stored in ROM.
But reconfigured data will be lost after reset.

• Full configured slave node - The slave node stores the configuration in
NVRAM, so it will still be active after reset.

Note that all variants of the slave nodes above must understand at least the manda-
tory configuration services.

When a slave node enters operational state (see Protocol Specification section
Section 2.6.1) it shall fulfill the following requirements for node configuration.

• It shall have a unique supplier ID, function ID and configured NAD
combination.

• If the slave node does not contain a configuration, all frames (except the
master request frame and slave response frame) in the slave node are
marked as invalid.

• Understand and be able to process all supported configuration requests.

4.2.2.1 Initial NAD

Each slave node has an initial NAD list, defined in the NCF, see Section 8.2.4. For
slave nodes that have no instance generation of the initial NAD the list contains only
one entry. The instance generation will set the initial NAD based on the initial NAD list.
The instance generation of the initial NAD is not part of this specification.

The configuration, using ld_set configuration or Assign NAD, will set the NAD to the
configured NAD. If the initial NAD is already equal to the configured NAD then no
action is taken.

Figure 4.2 shows the relationship between the initial NAD list, the initial NAD and the
configured NAD.
Website: www.lin-subbus.org

LIN Config and ID Spec
Revision 2.2A

December 31, 2010; Page 71

Node configuration
and identification
Initial NAD list
in the NCF

Initial NAD is set to
first entry in list

User defined
instantiation of NAD

Initial NAD

Assign NADThe initial NAD is the sameld_set_configuration
as the configured NAD

Configured NAD

Configuration

Instance generation

Assign NAD

Figure 4.2: NAD instantiation and configuration process

4.2.3 PDU STRUCTURE

The node configuration and identification services are transported using the transport
layer, see Transport Layer Specification. Only the single frame (SF) is used for all
requests and responses here.
Website: www.lin-subbus.org

LIN Config and ID Spec
Revision 2.2A

December 31, 2010; Page 72

Node configuration
and identification
4.2.3.1 Overview

Requests are always sent in master request frames and responses are always sent in
slave response frames. The meaning of each byte in the PDUs is defined in the fol-
lowing sections.

4.2.3.2 NAD

NAD is the address of the slave node being addressed in a request, i.e. only slave
nodes have an address. NAD is also used to indicate the source of a response.

NAD values are in the range 1 to 127 (0x7F), while 0 (zero) and 128 (0x80) to 255
(0xFF) are reserved for other purposes:

Table 4.4: NAD values

NAD value Description

0 Reserved for go to sleep command, see Section 2.6.3

1 - 125 (0x7D) Slave node addresses (NAD)

126 (0x7E)
Functional node address (functional NAD), only used for diagnos-

tics (using the transport layer)

127 (0x7F) Slave node address broadcast (broadcast NAD)

128 (0x80) - 255 (0xFF)

Free usage.
Diagnostic frames with the first byte in the range 128 (0x80) to 255
(0xFF) are allocated for free usage since the LIN 1.2 standard. See

user defined diagnostics Section 5.2.6.

Note that there is a one-to-many mapping between a physical slave node and a logi-
cal slave node and it is addressed using the NAD. This means that one physical slave
node may be composed of several logical slave nodes.

Note: It is recommended not to use functional addressing during configuration since
the behavior is different for LIN 2.2 and LIN 2.1 slave nodes and LIN 2.0 slave nodes.

4.2.3.3 PCI

The PCI (Protocol Control Information) contains the transport layer flow control infor-
mation. For node configuration, one interpretation of the PCI byte exist, as defined in
Table 4.5.

Table 4.5: Structure of the PCI byte for configuration PDUs.

Type PCI type Additional information

B7 B6 B5 B4 B3 B2 B1 B0

SF 0 0 0 0 Length
Website: www.lin-subbus.org

LIN Config and ID Spec
Revision 2.2A

December 31, 2010; Page 73

Node configuration
and identification
The PCI type Single Frame (SF) indicates that the transported message fits into the
single PDU, i.e. it contains at maximum five data bytes. The length shall then be set to
the number of used data bytes plus one (for the SID or RSID).

4.2.3.4 SID

The Service Identifier (SID) specifies the request that shall be performed by the slave
node addressed. This SID numbering is consistent with ISO 15765-3 [3] and places
node configuration (0xB0 to 0xB7) in an area “Defined by vehicle manufacturer”.

The following Table 4.6 shows what SIDs are used:

Table 4.6: Node configuration and identification services

SID Service type Reference

0 - 0xAF reserved reserved See ISO15765-3 [3]

0xB0 Assign NAD Optional Section 4.2.5.1

0xB1 Assign frame identifier Obsolete See LIN2.0 specification

0xB2 Read by Identifier Mandatory Section 4.2.6.1

0xB3 Conditional Change NAD Optional Section 4.2.5.2

0xB4 Data Dump Optional Section 4.2.5.3

0xB5 Reserved Reserved Reserved

0xB6 Save Configuration Optional Section 4.2.5.4

0xB7 Assign frame identifier range Mandatory Section 4.2.5.5

0xB8 - 0xFF reserved reserved See ISO15765-3

4.2.3.5 RSID

The Response Service Identifier (RSID) specifies the contents of the response. The
RSID for a positive response is always SID + 0x40.

If the service is supported in the slave node the response is mandatory (even if the
request is broadcast). The support of a specific service will be listed in the NCF, see
Node Capability Language Specification.

A slave shall process the configuration request immediately and be able to respond in
the next schedule slave response frame (STmin and P2, see Section 5.6, are not
used for node configuration).

4.2.3.6 D1 to D5

The interpretation of the data bytes (up to five in a node configuration PDU) depends
on the SID or RSID.
Website: www.lin-subbus.org

LIN Config and ID Spec
Revision 2.2A

December 31, 2010; Page 74

Node configuration
and identification
If a PDU is not completely filled the unused bytes shall be recessive, i.e. their value
shall be 255 (0xFF). This is necessary since a diagnostic frame is always eight bytes
long.

4.2.4 NODE CONFIGURATION AND IDENTIFICATION

All requests are carried in master request frames, and all responses are carried in
slave response frames. All requests and responses are using single frames only.

The slave node shall abort processing of a configuration request after:

• Reception of a valid master request (except when NAD is the functional NAD)

• Reception of a master request that is valid concerning the LIN protocol, but
with absurd data, e.g. wrong PCI (except when NAD is the functional NAD)

The slave node shall proceed with a configuration request after:

• Reception of an invalid master request (failure in Header, checksum error,
framing error)

A slave node shall remember the response for a request until a new request with a
NAD or broadcast NAD (i.e. any NAD except a functional NAD) from the master node.
For example, if the master node transmits an unconditional frame between the
request and the response the slave node shall not forget the response.

A master node may choose not to ask for the response from the slave node, e.g. after
transmitting a broadcast (0x7F) request.

All services shall support the use of the wildcards, as defined in Section 4.2.1.1.

4.2.5 NODE CONFIGURATION SERVICES

4.2.5.1 Assign NAD

Assign NAD is used to resolve conflicting NADs in LIN clusters built using off-the-
shelves slave nodes or reused slave nodes. This request uses the initial NAD (or the
NAD wildcard); this is to avoid the risk of losing the address of a slave node. The NAD
used for the response shall be the same as in the request, i.e. the initial NAD.

It shall be structured as shown in Table 4.7.

Table 4.7: Assign NAD request

NAD PCI SID D1 D2 D3 D4 D5

Initial NAD 0x06 0xB0
Supplier ID

LSB
Supplier ID

MSB
Function ID

LSB
Function ID

MSB
New NAD
Website: www.lin-subbus.org

LIN Config and ID Spec
Revision 2.2A

December 31, 2010; Page 75

Node configuration
and identification
A response shall only be sent if the NAD, the Supplier ID and the Function ID match. If
successful, the message in Table 4.8 shall be sent as response.

Table 4.8: Positive assign NAD response

NAD PCI RSID Unused

Initial NAD 0x01 0xF0 0xFF 0xFF 0xFF 0xFF 0xFF

Note that the response is using the initial NAD and not the new NAD.

4.2.5.2 Conditional change NAD

The conditional change NAD is used to detect unknown slave nodes in a cluster and
to separate their NADs. Potential reasons for unknown slave nodes to appear in a
cluster are, e.g. incorrect assembly when manufacturing the cluster or incorrect slave
node replacement during service. This service will be used a number of times until the
NADs in the slave nodes are separated. The outcome will be a conflict free cluster
where the master node can identify the slave nodes.

The behavior in the slave node when the request is received:

1. Get the identifier specified in Table 4.20 and selected by Id.
2. Extract the data byte selected by Byte (Byte = 1 corresponds to the first byte, D1).
3. Do a bitwise XOR with Invert.
4. Do a bitwise AND with Mask.
5. If the final result is zero then change the NAD to New NAD.

Table 4.9: Conditional change NAD request

NAD PCI SID D1 D2 D3 D4 D5

NAD 0x06 0xb3 Id Byte Mask Invert New NAD

Table 4.10: Positive Conditional change NAD response

NAD PCI RSID Unused

NAD 0x01 0xF3 0xFF 0xFF 0xFF 0xFF 0xFF

A response from the slave node shall be structured as shown in Table 4.10.

The Conditional Change NAD is addressed with the current NAD, i.e. it does not use
the initial NAD as opposed to the Assign NAD request.

Example
Two slave nodes in a cluster are designed so that the lower byte (LSB) of the function
ID decides the NAD. If the first bit in the serial number is set then NAD will be set to 1,
if the second bit is set the NAD will be set to 2.

The master node will then transmit two conditional change NAD services with the fol-
lowing parameters:
Website: www.lin-subbus.org

LIN Config and ID Spec
Revision 2.2A

December 31, 2010; Page 76

Node configuration
and identification
Table 4.11: Conditional change NAD example

NAD PCI SID Id Byte Mask Invert New NAD

0x7F 0x06 0xB3 0x01 0x03 0x01 0xFF 0x01

0x7F 0x06 0xB3 0x01 0x03 0x02 0xFF 0x02

4.2.5.3 Data dump

This service is reserved for initial configuration of a slave node by the slave node sup-
plier and the format of this message is supplier specific. This service shall only be
used by supplier diagnostics and not in a running cluster, e.g at the car OEM. The
data dump request shall be structured as shown in Table 4.12.

Table 4.12: Data dump request

NAD PCI SID D1 D2 D3 D4 D5

NAD 0x06 0xB4 User defined User defined User defined User defined User defined

Table 4.13: Data dump response

NAD PCI RSID D1 D2 D3 D4 D5

NAD 0x06 0xF4 User defined User defined User defined User defined User defined

A response from the slave node shall be structured as shown in Table 4.13.

4.2.5.4 Save Configuration

This service tells the slave node(s) that the slave application shall save the current
configuration. The save configuration request shall be structured as shown in
Table 4.14. This service is used to notify a slave node to store its configuration. A con-
figuration in the slave node may be valid even without the master node using this
request (i.e. the slave node does not have to wait for this request to have a valid con-
figuration).

Table 4.14: Save configuration request

NAD PCI SID Unused

NAD 0x01 0xB6 0xFF 0xFF 0xFF 0xFF 0xFF

The software based (using the API) slave node will set a flag in the status register, see
Section 7.2.5.8, after receiving the request. It will not store the configuration automati-
cally. The application has to read out the configuration, see Section 7.3.1.6, and save
the configuration in a non-volatile space.

After reception of the service and the NAD is correct the slave node shall respond (not
wait until the configuration is saved). The positive response from the slave shall be
structured as shown in Table 4.15.
Website: www.lin-subbus.org

LIN Config and ID Spec
Revision 2.2A

December 31, 2010; Page 77

Node configuration
and identification
Table 4.15: Save configuration positive response

NAD PCI RSID Unused

NAD 0x01 0xF6 0xFF 0xFF 0xFF 0xFF 0xFF

4.2.5.5 Assign frame ID range

Assign frame ID range is used to set or disable PIDs up to four frames. The request
shall be structured as shown in Table 4.16.

It is important to notice that the request provides the protected identifier, i.e. the frame
identifier and its parity. Furthermore, frames with frame identifiers 60 (0x3C) to 63
(0x3F) can not be changed (diagnostic frames and reserved frames).

Table 4.16: Assign frame PID range request

NAD PCI SID D1 D2 D3 D4 D5

NAD 0x06 0xB7 start index PID (index) PID (index+1) PID (index+2) PID (index+3)

A response shall only be sent if the NAD match. If successful, the message in
Table 4.17 shall be transmitted as a response.

Table 4.17: Positive assign frame PID range response

NAD PCI RSID unused

NAD 0x01 0xF7 0xFF 0xFF 0xFF 0xFF 0xFF

The start index specifies which is the first frame to assign a PID. The order of the list is
specified in the node attributes section in the NCF and LDF of the slave node, see
Section 8.2.5 respective Section 9.2.2.2. The first frame in the list has index 0 (zero).

The PIDs are an array of four PID values that will be used in the configuration request.
Valid PID values here are the PID values for signal carrying frames, the unassign
value 0 (zero) and the do not care value 0xFF. The unassign value is used to invali-
date this frame for transportation on the bus. The do not care is used to keep the pre-
vious assigned value of this frame.

In case the slave cannot fulfill all of the assignments set PID or unassign or do not
care, the slave shall reject the request. The do not care can always be fulfilled.

The slave node will not validate the given PIDs (i.e. validating the parity flags), the
slave node relies on that the master sets the correct PIDs. Note that this is not a
requirement on not checking the PID in the header.

It is not necessary to unassign an already set PID in a slave node, to be able to set a
new PID for the same frame.
Website: www.lin-subbus.org

LIN Config and ID Spec
Revision 2.2A

December 31, 2010; Page 78

Node configuration
and identification
Example 1
A slave node has five frames {power_status, IO_1, IO_2, IO_3, IO_4}. The master
node application will setup a assign frame id request with the parameters: start index
set to 1 and PID (index 1..4) set to {0x80, 0xC1, 0x42, 0x0}. When the slave node
receives the request it will set the PIDs to {IO_1=0x80, IO_2=0xC1, IO_3=0x42,
IO_4=unassigned}. Note that the power_status frame will not be affected. The slave
will respond with a positive response if requested.

Example 2
A slave node has only two frames {status_frame, response_frame}. To assign PIDs to
these two frames the master application will setup the following request: start index
set to 0 and PID (index 0..3) set to {0xC4, 0x85, 0xFF, 0xFF}. Since the slave node
has only two frames the last two must be set to do not care, otherwise the request will
fail.

4.2.6 IDENTIFICATION

4.2.6.1 Read by identifier

It is possible to read the supplier identity and other properties from a slave node using
the request in Table 4.18.

Table 4.18: Read by identifier request

NAD PCI SID D1 D2 D3 D4 D5

NAD 0x06 0xB2 Identifier
Supplier ID

LSB
Supplier ID

MSB
Function ID

LSB
Function ID

MSB

The identifiers defined are listed in Table 4.19.

Table 4.19: Supported identifiers using read by identifier request.

Identifier Interpretation Length of response

0 LIN Product Identification 5 + RSID

1 Serial number 4 + RSID

2 - 31 Reserved -

32 - 63 User defined User defined

64 - 255 Reserved -

Support of identifier 0 (zero) is the only mandatory identifier, i.e. the serial number is
optional.
Website: www.lin-subbus.org

LIN Config and ID Spec
Revision 2.2A

December 31, 2010; Page 79

Node configuration
and identification
If the slave successfully processed the request it will respond according to Table 4.20.
Each row represents one possible response.

Table 4.20: Possible positive read by identifier response.

Id NAD PCI RSID D1 D2 D3 D4 D5

0 NAD 0x06 0xF2 Supplier ID LSB Supplier ID MSB Function ID LSB
Function ID

MSB
Variant

1 NAD 0x05 0xF2 Serial 0, LSB Serial 1 Serial 2 Serial 3, MSB 0xFF

32-
63

NAD
0x02 -
0x06

0xF2 user defined user defined user defined user defined user defined

If the slave is not supporting this request or could not process the request it will
respond according to Table 4.21.

Table 4.21: Negative response

NAD PCI RSID D1 D2 Unused

NAD 0x03 0x7F
Requested SID

(= 0xB2)
Error code
(= 0x12)

0xFF 0xFF 0xFF
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 80
LIN
 Diagnostic specification

Revision 2.2A

© LIN Consortium, 2010.

This specification as released by the LIN Consortium is intended for the purpose of
information only and is provided on an "AS IS" basis only and cannot be the basis for
any claims. The LIN Consortium will not be liable for any use of this Specification. The
unauthorized use, e.g. copying, displaying or other use of any content from this docu-
ment is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®. All rights reserved.
All distributions are registered.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 81

Introduction
5.1 INTRODUCTION
The LIN diagnostics defines methods to implement diagnostic data transfer between a
master node, respectively a diagnostic tester, and the slave nodes.

Three different classes of diagnostic nodes are defined. Class I is using normal signal-
ling and class II and class III uses the transport layer, see Transport Layer Specifica-
tion.

5.1.1 USING THE TRANSPORT LAYER

Two communication cases exist using the transport layer; the tester wants to transmit
a diagnostic request to a slave node OR the slave node wants to transmit a diagnostic
response to the tester. Below, Figure 5.1 and Figure 5.2 shows the message flow in
these two cases.

It is important that the unit controlling the communication (the tester or the master)
avoids requesting multiple slaves to respond simultaneously (as this would cause bus
collisions).

Silent slot (No pending CAN tester frame)

Master Slave

ID=0x3C
Diagnostic request (gatewayed from CAN)

Silent slot (No pending CAN tester frame)

Tester

Diagnostic request

Figure 5.1: Gatewaying of CAN messages to LIN.

Header, but no response from slave

Master Slave

ID=0x3D
Diagnostic response (gatewayed to CAN)

Header, but no response from slave

Tester

Diagnostic response

ID=0x3D

ID=0x3D

Figure 5.2: Gatewaying of LIN messages to CAN.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 82

Introduction
5.1.2 LIN MASTER

Since the master node usually is a high performance ECU, normally supports the ISO
14229-1 [4] protocol or its customer specific recommended practice. The master node
and the diagnostic tester are connected via a back-bone bus (e.g. CAN). The master
node shall receive all diagnostic requests addressed to the slave nodes from the
back-bone bus, and gateway them to the correct LIN cluster(s). Responses from the
slave nodes shall be gatewayed back to the back-bone bus through the master node.

All diagnostic requests and responses (services) addressed to the slave nodes can be
routed in the network layer (i.e. no application layer routing), if the Diagnostic and
Transport Layer Protocol of tester back-bone-bus master node fulfills the respective
needs. In this case, the master node must implement the LIN transport protocol, see
Transport Layer Specification, as well as the transport protocols used on the back-
bone busses (e.g. ISO15765-2 on CAN). See Section 7.4 for details about the imple-
mentation of gatewaying in the LIN master.

5.1.3 SLAVE NODES

Slave nodes are typically electronic devices that are not involved in a complex data
communication. Also, their need of distributing diagnostic data is low. However, most
slaves must transmit simple diagnostic information such as error indications in signal
carrying frames, see Section 2.7.3.

Due to different reasons, e.g. for architectural reasons, diagnostic and transport proto-
col shall be realized as defined in this chapter. LIN diagnostics defines 3 classes of
diagnostic slave nodes detailing the diagnostic communication and performance.

The diagnostic data is transported by the LIN protocol as specified in the Protocol
Specification. A standardized API for the C programming language is specified in the
Application Program Interface Specification.

Although diagnostics and node configuration services use the same frame IDs, i.e.
0x3C (master request frame) and 0x3D (slave response frame), different services are
used for configuration and diagnostics. Node configuration can be performed by the
master node independently while diagnostic services are always routed on request
from an external or internal test tool. Both use-cases use the same node address
(NAD) and transport protocol with the exception that configuration is always per-
formed via Single Frames. Only slave nodes have a NAD, see Section 4.2.3.2. The
NAD is also used as the source address in a diagnostic slave response frame.

Note that there is a one-to-many mapping between a physical node and a logical node
and it is addressed using the NAD. See Section 9.2.2.3.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 83

Diagnostic classes
5.2 DIAGNOSTIC CLASSES
Diagnostics in slave nodes are divided into three different diagnostic classes. A diag-
nostic class is assigned to each slave node according to its level of diagnostic func-
tionality and complexity.

5.2.1 DIAGNOSTIC CLASS I

Smart and simple devices like intelligent sensors and actuators, requiring none or very
low amount of diagnostic functionality. Actuator control, sensor reading and fault
memory handling is done by the master node, using signal carrying frames. There-
fore, specific diagnostic support for these tasks is not required. Fault indication is
always signal based.

5.2.1.1 Transport protocol

Diagnostic frames usage is limited to node configuration. Therefore single frame (SF)
transport protocol support is sufficient.

5.2.1.2 Diagnostic services

Only the node configuration services as defined in Table 4.6 are supported. The slave
does not support any other diagnostic services.

Node Identification is limited to the mandatory read by identifier service, see
Section 4.2.6.1.

5.2.2 DIAGNOSTIC CLASS II

A class II slave node is similar to a class I slave node, but is provides node identifica-
tion support. The extended node identification is normally required by vehicle manu-
facturers. Testers or master nodes use ISO 14229-1 [4] diagnostic services to request
the extended node identification information. Actuator control, sensor reading and
fault memory handling is done by the master node, using signal carrying frames.
Therefore, specific diagnostic support for these tasks is not required. Fault indication
is always signal based.

5.2.2.1 Transport protocol

Full transport layer implementation, see Transport Layer Specification, is required to
support multi-frame transmissions.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 84

Diagnostic classes
5.2.2.2 Diagnostic services

Slave-nodes must support a set of ISO 14229-1 [4] diagnostic services:

• Node identification (SID 0x22) defined by the user e.g. reading HW and SW
version, HW part number, diagnostic version

• Reading data parameter (SID 0x22) if applicable. Data parameter means:
every data that can be read from the ECU, e.g. oil temperature, vehicle speed

• Writing parameters (SID 0x2E) if applicable

Diagnostic class II slave nodes may also be operated as diagnostic class I slave node
in clusters if the master node does not support the diagnostic class II (i.e. does not
implement the full LIN transport protocol). According to Table 5.1, a Class II slave
node fulfills all Class I requirements.

If a slave node complies with diagnostic class I and diagnostic class II, it shall not
require execution of diagnostic class II services to be able to operate normally. All
minimum required sensor/actuator I/O and fault handling shall be transmitted via sig-
nal carrying frames.

5.2.3 DIAGNOSTIC CLASS III

Diagnostic class III slave nodes are devices with enhanced application functions, typi-
cally doing their own local information processing (e.g. function controllers, local sen-
sor/actuator loops). These slave nodes execute tasks beyond the basic sensor/
actuator functionality, and therefore require extended diagnostic support. Direct actua-
tor control and raw sensor data is often not exchanged with the master node, and
therefore not included in signal carrying frames. ISO 14229-1 [4] diagnostic services
for I/O control, sensor value reading and parameter configuration (beyond node con-
figuration) are required.

Class III slave nodes have internal fault memory, along with associated reading and
clearing services. Optionally, reprogramming (flash/eeprom reprogramming) of the
slave node is possible. This requires an implementation of a boot-loader and neces-
sary diagnostic services to unlock the device, initiate downloads and transfer data,
etc.

5.2.3.1 Addressing

Class III slave nodes require a unique NAD in the cluster.

5.2.3.2 Transport protocol

Full transport layer, see Transport Layer Specification, is required to support multi-
frame transmissions.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 85

Diagnostic classes
5.2.3.3 Diagnostic services

Slave nodes shall support all services as of Class II. Additionally, the services accord-
ing Table 5.1 may be supported depending on the features which are implemented by
the slave node.

Only class III slave nodes can reprogram the application via the LIN bus. Flash repro-
gramming via LIN bus is not defined in this specification. In case this functionality is
supported the relevant services must be implemented in the slave node.

5.2.4 SUMMARY OF SLAVE NODE CLASSES

Table 5.1 shows a list of diagnostic services supported by the different diagnostic
classes.

All supported configuration and diagnostic services of a slave node are listed in the
node capability file, see Node Capability Language Specification.

+ = it is mandatory for the class
empty cell = not applicable, not supported

Slave Diagnostic Class I II III
UDS ser-

vice index
[Hex]

Diagnostic Transport Protocol Requirements

Single frame transport only +

Full transport protocol (multi-segment) + +

Required Configuration Services

Assign frame identifier range + + + 0xB7

Read by identifier (0 = product id) + + + 0xB2 0x00

Read by identifier (all others) optional optional + 0xB2 0xXX

Assign NAD optional optional optional 0xB0

Conditional change NAD optional optional optional 0xB3

Positive response on
supported configuration services

+ + +
service +

0x40

Required UDS Services

Read data by identifier: 0x22

 - hardware and software version + + 0x22

 - hardware part number (OEM specific) + + 0x22

 - diagnostic version + + 0x22

Read by identifier (parameters) + + 0x22

Write by identifier (parameters) if applicable if applicable 0x2E

Table 5.1: Slave node diagnostic properties
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 86

Diagnostic classes
5.2.5 MASTER NODE REQUIREMENTS

5.2.5.1 Transport protocol

If only Diagnostic Class I slaves are on the LIN cluster, implementation of minimum
required LIN configuration support is sufficient. The master does not need to imple-
ment the full LIN diagnostic transport protocol.

For Diagnostic Class II and III slave nodes on the LIN-bus, the master node shall
implement the full LIN transport layer

5.2.5.2 Fault management, sensor reading, I/O control

Diagnostic Class I and Diagnostic Class II slave nodes provide signal based fault
information, and sensor and I/O access via signal carrying frames. The master node is
responsible to handle the slave nodes signal based faults and handle the associated
DTCs. It serves UDS requests directly to the tester, and acts as a diagnostic applica-
tion layer gateway. UDS services provide access to the sensor/actuator signals on the
LIN bus.

Diagnostic Class III slave nodes appear as independent diagnostic entities. The mas-
ter node does not implement diagnostic services for the diagnostic capabilities of its
Diagnostic Class III slave nodes.

Session control + 0x10

Read by identifier (sensor and actuator data) + 0x22

I/O control by identifier + 0x2F

Read and clear DTC (fault memory) + 0x19, 0x14

Routine control if applicable 0x31

Other diagnostic services if applicable ...

Flash Reprogramming Services

Flash programming services optional 0xXX

Slave Diagnostic Class I II III
UDS ser-

vice index
[Hex]

Table 5.1: Slave node diagnostic properties
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 87

Diagnostic classes
5.2.6 USER DEFINED DIAGNOSTICS

In addition to above classes it is also possible to use the free range of diagnostic
frames. The free range of diagnostic frames must all have the first data byte in the
range 128 (0x80) to 255 (0xFF), see Section 4.2.3.2. The characteristics of a solution
based on the user defined diagnostic are:

• Non-standardized and, hence, non-portable.

• Reasonable in overhead since the design is made specifically to fit the needs.

Since the user defined transportation is not standardized, this is not the preferred
solution.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 88

Requirements for
Signal based
5.3 REQUIREMENTS FOR SIGNAL BASED
DIAGNOSTICS

Signal based diagnostics are implemented by slave nodes (diagnostic class I and II),
which do not implement a fault memory and the diagnostic protocol to directly access
this fault memory from an external test tool.

There are two types of failure transmission via signal carrying frames:

1. Failure information periodically transmitted and encoded into an existing
signal (e.g. upper values of signal range used to indicate specific failure
conditions)

2. Failure information not periodically transmitted for components which do not
generate a signal that is periodically transmitted (e.g. slave node internal
failure)

Since failure type 1 is use-case specific and defined by OEMs it is not standardized
here.

Additional signal based failure transmission shall be implemented for type 2 failures
(i.e. if a slave node is capable of locally detecting faults which are not transmitted via
the associated signal in signal carrying frames already).

A failure status signal shall be assigned for each failure that would result in a separate
DTC in the master node.

Each slave node shall transmit the failure status information that is monitored by the
slave node to the master node via signal carrying frames. The status information shall
contain the current failure status of the slave nodes's components. The signal shall
support the states as defined in Table 5.2.

Table 5.2: Signal based fault states

Description

no test result available, default, initialization value

test result: failed

test result: passed

This information is used to indicate a failure of one of the components to the master
node's application, which can then store the associated DTC.

There should be one signal per replaceable component to simplify maintenance and
repair.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 89

Requirements for
Signal based
If a slave node implements more than one independent function, a status signal can
be assigned to each function. In this case only the failing function could be disabled by
the application.

The fault state signals are set in the NCF, status management clausal, see
Section 8.2.6.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 90

Transport Protocol
handling in LIN-
5.4 TRANSPORT PROTOCOL HANDLING IN LIN-
MASTER

The LIN master is responsible for handling the scheduling according to the currently
active diagnostic transmissions. This section defines the requirements for schedules
and schedule handling which has to be implemented to enable diagnostic communi-
cation with any slave node. The master node acts as a network layer router between
the back-bone bus and the LIN cluster, implying that the transport protocols on the
back-bone bus and on the LIN cluster are handled by the master.

Within the next chapters several communication sequence diagrams are used. Refer
to Figure 5.3 for the explanation of communication diagrams. For clearness of the
communication sequence charts, the size of the interleaved normal communication
schedules as well as the size of the diagnostic schedules does not represent the cor-
rect delays in the schedules and is only a schematic graphical representation.

Slave

ID=0x3C

Master

ID=0x3D

Diagnostic master request

ID=0x3D

Slave response frame

Slave response frame
without response

Empty slot /
normal communication

ID=0x3C

schedule

Diagnostic slave response
schedule

schedule
Diagnostic slave response

schedule
Normal communication

Master request frame

Active schedule table

Figure 5.3: Legend of communication sequence charts

The transport layer defines a special functional NAD (0x7E) that is used to broadcast
diagnostic requests. The broadcast NAD (0x7F) is normally not used in diagnostics,
since there will be collisions if the master requests responses. If used anyway, the
behavior will be the same as if a request with the slave node’s own NAD was received
(i.e. same behavior as for the configuration).

5.4.1 DIAGNOSTIC MASTER REQUEST SCHEDULE

The master node shall support a diagnostic master request schedule table that con-
tains a single master request frame.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 91

Transport Protocol
handling in LIN-
The diagnostic master request schedule table shall be executed whenever a master
request frame shall be transmitted (see Figure 5.4). Note that by insertion of an exe-
cution of the diagnostic master request schedule table the overall timing of the normal
communication schedule is affected.

Diagnostic master request
schedule

schedule
Normal communication

Active schedule table

schedule
Normal communication

t

Figure 5.4: Interleaving of a diagnostic master request schedule table

5.4.2 DIAGNOSTIC SLAVE RESPONSE SCHEDULE

The master node shall support a diagnostic slave response schedule table that con-
tains a single slave response frame.

The diagnostic slave response schedule table shall be inserted between the execu-
tions of the normal communication schedules whenever a slave response frame shall
be transmitted (see Figure 5.5). Note that by insertion of an additional execution of the
diagnostic slave response schedule table the overall timing of the normal communica-
tion is affected.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 92

Transport Protocol
handling in LIN-
Diagnostic slave response
schedule

schedule
Normal communication

Active schedule table

schedule
Normal communication

t

Figure 5.5: Interleaving of a diagnostic slave response schedule table

5.4.3 DIAGNOSTIC SCHEDULE EXECUTION

When no diagnostic communication is active, the master node shall not execute diag-
nostic schedules tables (see Figure 5.6). This shall be the default behavior of the mas-
ter node.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 93

Transport Protocol
handling in LIN-
Normal communication
schedule

Active schedule table

t

Normal communication
schedule

Normal communication
schedule

Normal communication
schedule

.

.

.

Figure 5.6: No diagnostic communication

A master node supports the following different scheduling modes:

1. Interleaved Diagnostics Mode (mandatory)

2. Diagnostics-Only-Mode (optional)

The two modes are defined in greater detail in Section 5.4.3.1 and Section 5.4.3.2.

The master node shall support to operate each of its connected LIN clusters in the one
or the other mode upon request from an external diagnostic test tool.

5.4.3.1 Diagnostics Interleaved Mode

When diagnostic schedules need to be executed, the master node shall finish the cur-
rently running normal communication schedule and then switch to the required diag-
nostic schedule to perform the transmission (see Figure 5.4 and Figure 5.5). After
execution of a diagnostic schedule the master node shall execute a normal communi-
cation schedule before executing the next diagnostic schedule. This is the Diagnostics
Interleaved Mode (see Figure 5.7) and shall be the default mode of the master node.

When using the Diagnostics Interleaved Mode it shall be ensured (via normal commu-
nication schedule design) that the time between two subsequent diagnostic schedules
fulfills the OEM specific diagnostic requirements.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 94

Transport Protocol
handling in LIN-
Diagnostic master request
schedule

Active schedule table

t

Normal communication
schedule

Normal communication
schedule

Diagnostic slave response
schedule

.

.

.

Figure 5.7: Normal diagnostic communication mode

The number of executions of the diagnostic master request schedule table depends
on the amount of data that needs to be transmitted and shall be determined by the
master node considering the LIN transport protocol (e.g. Two executions of the sched-
ule for transmitting 10 user data bytes using the LIN transport protocol).

The subsequent interleaved execution of the diagnostic slave response schedule
table depends on the amount of data to be transferred and shall therefore be per-
formed by the master node until the transmission has been successfully finished or a
transport protocol timeout occurs.

If a diagnostic transmission from a slave node to the master node has been started,
the master node shall keep executing the diagnostic slave response schedule even
when one or several slave response frame headers have not been answered (see
Figure 5.8) until:

• A P2max / P2*max timeout occurs, see Section 5.6.

• A transport protocol timeout occurs, see Section 3.2.5
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 95

Transport Protocol
handling in LIN-
Slave

ID=0x3C

Master

Diagnostic master request

ID=0x3D
Slave response frame
without response

ID=0x3C

schedule

Normal communication
schedule

schedule
Diagnostic slave response

schedule
Normal communication

Master request frame

Active schedule table

External
test tool

Diagnostic request
to slave node

schedule
Diagnostic slave response

schedule
Normal communication

schedule
Diagnostic slave response

ID=0x3D
Slave response frame
with response (SF)

ID=0x3D
Slave response frame
without response

Diagnostic response

CAN

Figure 5.8: Continued execution of diagnostic slave response schedule table until
response is received

5.4.3.2 Diagnostics Only Mode

The master node may optionally implement a Diagnostics Only Mode in which only
the diagnostic schedules and no normal communication schedules are executed. The
basic principles to use master request frame schedule tables and slave response
frame schedule tables are the same as for the diagnostics interleaved mode except
that no normal communication schedules are interleaved between the diagnostic
schedule tables.

This is to allow for optimized diagnostic data transmission (e.g. when reading slave-
node Identifications or during flash reprogramming, see Figure 5.9 for the different use
cases).
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 96

Transport Protocol
handling in LIN-
Diagnostic master

Active schedule table

t

request schedule

Diagnostic master
request schedule

Diagnostic master
request schedule

Diagnostic master
request schedule

Diagnostic slave

Active schedule table

t

response schedule

Diagnostic slave
response schedule

Diagnostic slave
response schedule

Diagnostic slave
response schedule

Diagnostic slave

Active schedule table

t

response schedule

Diagnostic master
request schedule

Diagnostic master
request schedule

Diagnostic slave
response schedule

.

.

.

.

.

.

.

.

.

a) Long transmission to
diagnostic class III slave

b) Long transmission from
diagnostic class III slave

a) Subsequent requests with
responses from diagnostic
class II slave nodes

Figure 5.9: Use cases for diagnostic only mode

The diagnostics only mode shall be enabled and disabled via diagnostic service
request from external test tool (e.g. service "Communication Control" in UDS to dis-
able normal communication on the LIN cluster will lead to the activation of the Diag-
nostics Only Mode). When operating in the diagnostics only mode without any active
transmission the master node shall execute diagnostic slave response schedule
tables (see Figure 5.10).
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 97

Transport Protocol
handling in LIN-
Diagnostic slave response
schedule

Active schedule table

t

Diagnostic slave response
schedule

Diagnostic slave response
schedule

Diagnostic slave response
schedule

.

.

.

Figure 5.10: Default schedule in the diagnostics only mode

5.4.4 TRANSMISSION HANDLER REQUIREMENTS

The master node shall implement a transmission handler as shown in Figure 5.11.

One transmission handler per cluster connected to the master node may be imple-
mented that operate independently from each other. The transmission handler shall
be capable to operate in either interleaved diagnostics mode or diagnostics only
mode.

Note: This implies that at least one active master to slave node physical transmission
plus one functional transmission can be handled per cluster.

Broadcasting to all LIN clusters of a master node shall always be possible regardless
of the currently active connections.

Due to the communication restrictions on a cluster the following communication sce-
narios are not supported:

• Responses from slave nodes to a functional request. The external test tool
must ensure that functional requests do not require a response (e.g.
TesterPresent request with SuppressPositiveResponseMsgIndicationFlag set
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 98

Transport Protocol
handling in LIN-
to 1) as otherwise an interleaved functional request will destroy the next slave
response frame as multiple slave nodes will transmit a response.

• Asynchronous responses/transmissions from slaves without any prior request
(in Diagnostics Only Mode this limitation may be circumvent via use-case
specific implementations)

5.4.4.1 Master node transmission handler

A transmission handler shall be implemented by the master node according to Figure
5.11. Depending on whether the master node is operating in the diagnostics inter-
leaved mode or in the diagnostics only mode the corresponding actions to be per-
formed in the individual state slightly differ.

The following states are defined for both modes:

• Idle:

In this state the master node is neither receiving nor transmitting any transmis-
sion on the LIN cluster. It is consequently available for any incoming transmis-
sion from the back-bone bus (e.g. CAN).

• Tx functional active:

In this state the master node is routing a functional addressed request from the
back-bone bus to the LIN cluster. This can only be a single frame (SF) according
to restrictions for the transport protocol on LIN (see Transport Layer Specifica-
tion).

• Tx physical active:

In this state the master node is currently routing data from the back-bone bus to
one slave node in the LIN cluster. The master node is consequently occupied
and cannot route any other physical transmission from the back-bone bus to the
LIN cluster. Also no response from a slave node can be routed to the back-bone
bus.

• Rx physical active:

In this state the master node is routing a transmission from a slave node to the
back-bone bus. It is possible to transmit functional addressed requests to the LIN
cluster but cannot handle further physical transmissions to a slave node.

• Interleaved functional during Tx
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 99

Transport Protocol
handling in LIN-
This is the state in which the master node routes a functional addressed request
from the back-bone bus to the LIN cluster while a transmission to a slave node is
currently active. Functional addressed Single Frames (SF) can be transmitted,
but shall be ignored by the active slave node while receiving a physically
addressed transmission.

• Interleaved functional during Rx

In this state the master node routes a functional addressed request from the
back-bone bus to the cluster while a reception from a slave node is currently
active. Functional addressed Single Frames (SF) can be transmitted, but shall
be ignored by the active slave node while transmitting the physically addressed
response.

Idle

Tx physical Rx physical

Interleaved Tx
functional during Tx

physical

Interleaved
functional during Rx

physical

Tx functional active

(11)

(1)

(2)

(9)(8)(5)(4)

(6)(3) (7)

(10)

(14)

(13)
(12)

Figure 5.11: Master node transmission handler
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 100

Transport Protocol
handling in LIN-
1. Idle state  Tx physical active state

• Trigger:
Start of a physical transmission from the back-bone bus to a slave node.

• Effect:
Start executing diagnostic master request frame schedule tables and
handle the transport protocol.

2. Tx physical active state Idle state

• Condition: Routing of the physical transmission from the back-bone bus to
the cluster has finished or a transport protocol transmission error (e.g.
timeout) on the back-bone bus occurred.

• Action: Stop executing master request frame schedule tables.

3. Tx physical active state Tx physical active state

• Condition: Routing of the physical transmission from the back-bone bus to
the slave node has not finished (i.e. data still needs to be routed).

• Action: Continue executing master request schedule table and handle
transport protocol on LIN (i.e. route transmission from the back-bone bus to
the slave node).

4. Tx physical active state Interleaved functional during Tx physical state

• Condition: Functional addressed request from the back-bone bus has been
received.

• Action: Interrupt the physical transmission to the slave node and execute a
single master request frame schedule to transmit the functional addressed
request onto the cluster.

5. Interleaved functional during Tx physical stateTx physical active state

• Condition: Functional addressed request has been routed onto the cluster.

• Action: Continue the interrupted physical transmission to the slave node.

6. Tx physical active state Rx physical active state

• Condition: The physical transmission to the slave node has been
successfully completed (according to the Transport Layer Specification).

• Action: Stop executing master request frame schedule tables, start
executing slave response frame schedule tables and handle the incoming
response from the previously addressed slave node.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 101

Transport Protocol
handling in LIN-
7. Rx physical active stateRx physical active state

• Condition: The response from the slave node has not been started or has
not finished yet (according to the LIN transport protocol).

• Action: Transmit slave response frame schedule tables and handle the LIN
transport protocol (i.e. route transmission from the slave node to the back-
bone bus).

8. Rx physical active stateInterleaved functional during Rx physical state

• Condition: Functional addressed request from the back-bone bus has been
received.

• Action: Interrupt the response from the slave node and execute a single
master request frame schedule table to transmit the functional addressed
request onto the cluster.

9. Interleaved functional during Rx physical state Rx physical active state

• Condition: Functional addressed request has been routed onto the cluster.

• Action: Restart executing slave response frame schedules and continue
the interrupted reception from the slave node.

10.Rx physical active state Idle state

• Condition: Reception from the slave node has been completed (according
to the Transport Layer Specification) or a transport protocol error on the
back-bone bus has occurred or the timeout P2max respective P2*max has
elapsed (according to the negative response code 0x78 handling as
defined in ISO 15765-3 [3])

• Action: Stop executing slave response frame schedules.

11.Idle stateTx functional active state

• Condition: Functional addressed request from the back-bone bus has been
received.

• Action: Execute a single master request frame schedule table to transmit
the functional addressed request onto the cluster.

12.Tx functional active state Idle state

• Condition: Functional addressed request has been routed onto the cluster.

• Action: Stop executing master request frame schedules.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 102

Transport Protocol
handling in LIN-
13.Idle state Idle state

• Condition: No physical transmission from the back-bone bus to be routed to
a slave node nor any response to be routed from a slave node to the back-
bone bus.

• Action:
Diagnostics interleaved mode: Do not execute any master request frame
schedule tables or slave response frame schedule tables.
Diagnostics only mode: Execute slave response frame schedule tables

14.Idle state  Rx physical active state (for Diagnostics only mode only)

• Condition: A slave node has initiated a transmission via one of the slave
response frame schedule tables.

• Action: Handle the incoming response from the responding slave node and
start routing to the back-bone bus.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 103

Slave node
transmission
5.5 SLAVE NODE TRANSMISSION HANDLER
Each slave node shall implement a transmission handler as defined in Figure 5.12.
This is to allow for diagnostic communication without frame collisions on the cluster.

During diagnostics the broadcast NAD is normally not used. If this will happen the
slave node will process requests with broadcast NAD (0x7F) in the same way as if it is
the slave node’s own NAD. Note the difference between the broadcast NAD (0x7F)
and functional NAD (0x7E).

The following states are defined:

• Idle:

In this state the slave node is neither receiving nor transmitting any messages in
the cluster. It is consequently available for any incoming request from the master
node. It shall not respond to slave response frames.

• Receive physical request:

In this state the slave node is receiving a transmission from the master node. It is
receiving and processing the transport layer frames as received from the master
node. The slave node shall ignore any interleaved functional addressed trans-
mission from the master node.

• Transmit physical response:

In this state a slave node is currently still processing the previously received
request, is ready to transmit a physical response or is actually transmitting the
response to the previously received request. A slave node shall not receive nor
process interleaved functional addressed (NAD 0x7E) transmissions from the
master node. Physical transmissions shall be received and will make the slave
node discard the current request data or response data. If the request is
addressed to the slave node the request shall be received and processed.

• Receive functional request:

In this state a slave node is receiving a functional transmission from the master
node. The slave node shall not respond to any slave response frames.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 104

Slave node
transmission
Receive functional
request

Idle

Receive physical
request

Transmit physical
response (5)

(6)

(4)(3)

(1)
(2)

(9) (8)(7)

(10)

Figure 5.12: Slave node transmission handler

1. Idle stateReceive physical request state

• Condition: A master request frame has been received with the NAD
matching the slave node's own NAD.

• Action: Start receiving and processing the physical request according to the
transport layer requirements.

2. Receive physical request stateIdle state

• Condition: A transport layer error has occurred or a master request frame
with an NAD different from the slave node's own NAD has been received.

• Action: Stop receiving and processing the physical request. Do not respond
to slave response frames.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 105

Slave node
transmission
3. Receive physical request state Receive physical request state

• Condition: The physical request has not been completely received yet and
master request frames are received with the NAD set to the slave node's
own NAD. A functional addressed master request frame shall be ignored

• Action: Continue receiving and processing the physical request.

4. Receive physical request state Transmit physical response state

• Condition: The physical request has been completely received.

• Action: Process the diagnostic request. If a new physical request with the
NAD set to the slave node's own address is received while processing the
previous request, the slave node shall discard the current request or
response data and shall start receiving the new request.

5. Transmit physical response state Transmit physical response state

• Condition: The physical response has not been completely transmitted yet.
A functional addressed request shall be ignored.

• Action: Keep responding to slave response frames according to the
transport layer requirements.

• Note: A slave node will not process a functional addressed request while in
the transmit physical response state. Therefore it must be ensured by the
external test tool that functionally addressed requests that shall be
processed by all slave nodes are only transmitted if no further responses
from any slave node are expected. Otherwise there's no guarantee nor
indication for the external test tool whether a slave node has processed the
functional request.

6. Transmit physical response state Idle state

• Condition: The physical response has been completely transmitted, a LIN
transport layer error occurred or a re-quest with the NAD set to a different
as the slave node's own NAD has been received.

• Action: Discard the request and response data. Stop responding to slave
response frames.

7. Idle state Receive functional request state

• Condition: A master request frame with the NAD parameter set to the
functional NAD has been received.

• Action: Receive and process the master request frame according to the
transport layer. Do not respond to the slave response frame headers.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 106

Slave node
transmission
8. Receive functional request state Idle state

• Condition: The functional request was processed.

• Action: Discard any response data. Stop responding to slave response
frames.

9. Receive functional idle state Idle state

• Condition: No request is received and no response is pending.

• Action: Do not respond to any slave response frames.

10.Transmit physical response state  Receive physical request state

• Condition: The previous request has been processed and a diagnostic
master request frame with the NAD parameter set to the slave node's own
node address has been received.

• Action: Discard the response data. Start receiving and processing the
physical request according to the LIN transport protocol requirements.
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 107

Slave diagnostic
timing
5.6 SLAVE DIAGNOSTIC TIMING REQUIREMENTS
This chapter contains the requirements for the timing parameters that have to be
taken into account when designing the LIN cluster. The monitoring of the timing
parameters for the diagnostic classes I and II have to be implemented in the master
node, the monitoring for diagnostic class III-nodes have to implemented by the slave
node itself.

Table 5.3: Diagnostic communication timings

Parameter
Affected
device

Description

min. value / per-
formance

requirement
max. value /

timeout

P2
master
node

Time between reception of the last frame of a diag-
nostic request on the LIN bus and the slave node

being able to provide data for a response.
The maximum value defines the time after which a
slave node must received a slave response header

before it discards its response.
Each slave node defines this minimum value in the
NCF, see Node Capability Language Specification.

50 ms 500 ms

STmin
master
node

The minimum time the slave node needs to pre-
pare the reception of the next frame of a diagnostic
request or the transmission of the next frame of a

diagnostic response.
Each slave node defines this minimum value in the
NCF, see Node Capability Language Specification.

0 ms n/a

P2*
master
node

Time between sending a NRC 0x78 and the LIN-
slave being able to provide data for a response.

P2 2000 ms
Website: www.lin-subbus.org

LIN Diagnostic Spec
Revision 2.2A

December 31, 2010; Page 108

Slave diagnostic
timing
A timing sequence chart of the diagnostic communication is shown in Figure 5.13. The
tester tool is shown only as an example.

Master Slave

ID=0x3C

Tester

FC

Diagnostic
request

FF

CF
ID=0x3C

STmin

ID=0x3D

ID=0x3D

STmin

ID=0x3D

STmin

ID=0x3D

ID=0x3DCF

CF

P2

Diagnostic
response

FC

FF

FF - First Frame

CF - Continuous frame

FC - Flow Control

Figure 5.13: Timing sequence chart of the diagnostic communication from the tester
to LIN via a back-bone bus.
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 109
LIN
 Physical Layer Specification

Revision 2.2A

© LIN Consortium, 2010.

This specification as released by the LIN Consortium is intended for the purpose of
information only and is provided on an "AS IS" basis only and cannot be the basis for
any claims. The LIN Consortium will not be liable for any use of this Specification. The
unauthorized use, e.g. copying, displaying or other use of any content from this docu-
ment is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®. All rights reserved.
All distributions are registered.
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 110

Introduction
6.1 INTRODUCTION
In Revision 2.0 of the LIN Physical Layer Specification the receiver specification has
been left unchanged. Just the LIN transmitter specification has been modified in order
to provide higher transmission reliability compared to older LIN physical layer specifi-
cation versions (e.g. Rev. 1.3).

The LIN physical layer of this revision is technically identical to Revision 2.0. Only
ambiguous and incorrect specifications have been clarified and missing specifications
have been added.

• A chapter about the physical layer compatibility has been added.

• The ambiguous term "clock tolerance" has been changed into "bit rate
tolerance".

• The constraint for slave-to-slave communication has been clarified.

• A chapter has been added, which specifies the bit sample timing of byte fields.

• The supply voltage reference has become unique. In this context the voltage
reference of the battery and ground shift has been changed from the voltage
across the vehicle battery connectors to the ECU supply voltage connectors.

• A chapter about the performance in non-operation range has been added.

• A chapter about the performance during fault modes has been added.
All parameters in this specification are defined for the ambient temperature range from
-40°C to 125°C.
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 111

Physical Layer
Compatibility
6.2 PHYSICAL LAYER COMPATIBILITY
Since the LIN physical layer is independent from higher LIN layers (e.g. LIN protocol
layer), all nodes with a LIN physical layer according to this revision can be mixed with
LIN physical layer nodes, which are according to older revisions (i.e. LIN 1.0, LIN 1.1,
LIN 1.2, LIN 1.3, LIN 2.0, LIN 2.1 and LIN 2.2), without any restrictions.
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 112

Bit rate Tolerance
6.3 BIT RATE TOLERANCE
The bit rate tolerance of the LIN medium describes the bit rate deviation from a refer-
ence bit rate. It is the sum of the following parameters:

• Bit time measurement failure of the slave node

• Inaccuracy of setting the bit rate (systematic failure due to granularity of the
configurable bit rate)

• Clock source stability of the slave node starting from the end of the sync byte
field up to the end of the entire LIN frame (last sampled bit)

• Clock source stability of the master node starting from the end of the sync
byte field up to the end of the entire LIN frame (last transmitted bit)

On-chip clock generators can achieve a frequency tolerance of better than ±14% with
internal-only calibration. Hence, a bit rate tolerance better than ±14% can be
achieved. This accuracy is sufficient to detect a break in the message stream. The
subsequent fine calibration using the synchronization field ensures the proper recep-
tion and transmission of the message. The on-chip oscillator must allow for accurate
bite rate measurement and generation for the remainder of the message frame, taking
into account effects of anything, which affects the bit rate, such as temperature and
voltage drift during operation.

The bit rates on the LIN bus are specified in the range of 1 to 20 kbit/s. The specific bit
rate used on a LIN bus is defined as the nominal bit rate FNom.

In case a non-LIN physical layer (e.g. ISO 11898) is used, the bit rate may have to be
adjusted.
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 113

Bit rate Tolerance
Table 6.1: Bit rate tolerances relative to nominal bit rate

no. bit rate tolerance Name F / FNom.

Master node (deviation from nominal bit rate) FTOL_RES_MASTER <0.5%

Slave node without making use of synchronization 
(deviation from nominal bit rate)

FTOL_RES_SLAVE <1.5%

Deviation of slave node bit rate from the nominal bit
rate before synchronization; relevant for nodes mak-
ing use of synchronization and direct break detection.

FTOL_UNSYNC <14%

Table 6.2: Slave node bit rate tolerance relative to master node bit rate

no. bit rate tolerance Name F / FMaster

Deviation of slave node bit rate relative to the master
node bit rate after synchronization; relevant for nodes
making use of synchronization; any slave node must stay
within this tolerance for all fields of a frame which follow
the sync field.

FTOL_SYNC <2%

Table 6.3: Bit rate tolerance for slave to slave communication

no. bit rate tolerance Name F / FMaster

For communication between any two nodes (i.e. data stream
from one slave to another slave) their bit rate must not differ
by more than FTOL_SL_to_SL. The following condition must be
checked for:

a) |FTOL_RES_SLAVE1 - FTOL_RES_SLAVE2 | < FTOL_SL_to_SL

b) |FTOL_SYNCH1 - FTOL_SYNCH2 | < FTOL_SL_to_SL

c) |(FTOL_RES_MASTER + FTOL_SYNCH1) - FTOL_RES_SLAVE2 |
< FTOL_SL_to_SL

FTOL_SL_to_SL <2%

Param 1

Param 2

Param 3

Param 4

Param 5
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 114

Timing
Requirements
6.4 TIMING REQUIREMENTS

6.4.1 BIT TIMING REQUIREMENTS

If not otherwise stated, all bit times in this document use the bit timing of the Master
Node as a reference.

6.4.2 SYNCHRONIZATION PROCEDURE

The sync byte field consists of the data ’0x55’ inside a byte field. The synchronization
procedure has to be based on time measurement between falling edges of the pat-
tern. The falling edges are available in distances of 2, 4, 6 and 8 bit times which allows
a simple calculation of the basic bit times Tbit.

start

 2 Tbit

bit
stop
 bit

Sync field

0 1 2 3 4 5 6 7

8 Tbit

 2 Tbit 2 Tbit 2 Tbit

Figure 6.1: Sync byte field

6.4.3 BIT SAMPLE TIMING
The bits of a byte field shall be sampled according to the following specification. In
Figure 6.2 the bit sample timing of a byte field is illustrated. The corresponding timing
parameters are listed in Table 6.4.

A byte field shall be synchronized at the falling edge of the start bit. The byte field syn-
chronization (BFS) shall have an accuracy of tBFS.

Because of different established solutions for start-bit sampling on the market, speci-
fied beyond LIN 2.x. The LIN 2.2 is softened in that way that the specification of the
start-bit sampling will be removed. All methods for start-bit sampling that meet the
byte field synchronization tBFS are now allowed.
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 115

Timing
Requirements
After the byte field synchronization on the falling edge of the start bit the data bit itself
shall be sampled within the window between the earliest bit sample (EBS) time tEBS
and the latest bit sample (LBS) time tLBS. The latest bit sample time tLBS depends on
the accuracy of the byte field synchronization tBFS. The dependency between tLBS and
tBFS is given in following equation:

tLBS = 10/16 TBIT - tBFS (11)

The following bits shall be sampled within the same range as the sample window of
the first data bit with the sample window repetition time tSR respectively. The sample
window repetition time tSR is specified from the EBS of the former bit (n-1) to the EBS
of the current bit:

tSR = tEBS(n) - tEBS(n-1) = tLBS(n) - tLBS(n-1) = TBIT (12)

Table 6.4: Bit Sample Timing

no. parameter min. typ. max. unit Comment / condition

tBFS 1/16 2/16 TBIT
Value of accuracy of the byte field detec-
tion

tEBS 7/16 TBIT Earliest bit sample time, tEBS  tLBS

tLBS TBIT
Latest bit sample (see Equation 11), 
tLBS tEBS

For devices, which make use of more than one sample per bit, the bit sample majority
shall determine the bit data. Furthermore, the sample majority shall be between the
EBS and the LBS.

In Table 6.5 bit sample timing examples are listed.

Table 6.5: Bit Sample Timing example

UART/SCI
cycles per TBIT

tBFS tEBS tLBS = 10/16 TBIT - tBFS

16 1/16 TBIT 7/16 TBIT 9/16 TBIT

8 1/8 TBIT (= 2/16 TBIT) 4/8 TBIT (= 8/16 TBIT) 4/8 TBIT (= 8/16 TBIT)

Param 6

Param 7

Param 8
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 116

Timing
Requirements
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Start
Bit

Stop
Bit

Start Bit Bit 0 (LSB)

tSR = tEBS(1) - tEBS(0) = TBIT

falling edge
of start bit
detected

LBS
(1)

EBS
(1)

Stop BitBit 7

tEBS = 7/16 TBITtBFS

tEBS = 7/16 TBIT

TBIT

LBS
(0)

EBS
(0)

tLBS = 10/16 TBIT - tBFS

tLBS = 10/16 TBIT - tBFS

Figure 6.2: Bit Sample Timing
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 117

Line Driver/
Receiver
6.5 LINE DRIVER/RECEIVER

6.5.1 GENERAL CONFIGURATION

The bus line driver/receiver is based on the ISO 9141 standard [1]. It consists of the
bidirectional bus line LIN which is connected to the driver/receiver of every bus node,
and is connected via a termination resistor and a diode to the positive battery node
VBAT (see Figure 6.3). The diode is mandatory to prevent an uncontrolled power-sup-
ply of the ECU from the bus in case of a ’loss of battery’.

It is important to note that the LIN specification refers to the voltages at the external
electrical connections of the electronic control unit (ECU), and not to ECU internal
voltages. In particular the parasitic voltage drops of reverse polarity diodes have to be
taken into account when designing a LIN transceiver circuit.

6.5.2 DEFINITION OF SUPPLY VOLTAGES FOR THE PHYSICAL INTERFACE

VBAT denotes the supply voltage at the connector of the ECU. Electronic components
within the unit may see an internal supply VSUP being different from VBAT (see Figure
6.3). This can be the result of protection filter elements and dynamic voltage changes
on the bus. This has to be taken into consideration for the implementation of semicon-
ductor products for LIN.
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 118

Line Driver/
Receiver
Rx

Tx

Master ECU

VBUS

VSUP

VShift_BAT

1K30K

Transceiver IC

VSUP
VBUSrec

t

VBUS

VBAT

Voltage Drop over
the diodes in pull up path

VBUSdom

Dser_int

VGND_ECU

VBATTERY

VBATTERY

VGND_BATTERY

VBAT

VShift_GND

VBAT

VSUP: Internal supply for electronics

Dser_master

Figure 6.3: Illustration of the Difference between External Supply Voltage VBAT and
the Internal Supply Voltage VSUP
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 119

Line Driver/
Receiver
6.5.3 SIGNAL SPECIFICATION

VSUP

dominant

recessive

driver node

VSUP

60%

40%
dominant

recessive

receiver node

Figure 6.4: Voltage Levels on the Bus Line

For a correct transmission and reception of a bit, it has to be asserted that the signal is
available with the correct voltage level (dominant or recessive) at the bit sampling time
of the receiver. Ground shifts as well as drops in the supply voltage have to be taken
into consideration as well as symmetry failures in the propagation delay. Figure 6.5
shows the timing parameters that impact the behavior of the LIN Bus.

The minimum and maximum values of the different parameters are listed in the follow-
ing tables.



















Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 120

Line Driver/
Receiver



Timing diagram:

tBit tBit tBit

THRec(max)

THDom(max)

THRec(min)

THDom(min)

tBus_dom(max) tBus_rec(min)

tBus_dom(min) tBus_rec(max)

Thresholds of

Thresholds of

VSUP
(Transceiver supply
of transmitting node)

trx_pdf(1) trx_pdr(1)

trx_pdr(2) trx_pdf(2)

RXD
(output of receiving Node 1)

RXD
(output of receiving Node 2)

TXD
(input to transmitting Node)

receiving node 1

receiving node 2

LIN Bus Signal

Figure 6.5: Definition of bus timing parameters

6.5.4 ELECTRICAL DC PARAMETERS
The electrical DC parameters of the LIN Physical Layer and the termination resistors
are listed in Table 6.6 and Table 6.7, respectively. Unless otherwise specified, all volt-
ages are referenced to the local ECU ground and positive currents flow into the ECU.
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 121

Line Driver/
Receiver
Note that in case of an integrated resistor/diode network no parasitic current paths
must be formed between the bus line and the ECU-internal supply (VSUP), for exam-
ple by ESD elements.

no. parameter min. typ. max. unit comment / condition

Param 9 VBAT a 8 18 V ECU operating voltage range

Param 10 VSUP
b 7.0 18 V supply voltage range

Param 11
VSUP_NON_OP -0.3 40 V

voltage range within which the device is not
destroyed

Param 12

IBUS_LIM
c 40 200 mA

Current Limitation for Driver dominant state
driver on 
VBUS = VBAT_max

d

Param 13

IBUS_PAS_dom -1 mA

Input Leakage Current at the Receiver incl.
Pull-Up Resistor as specified in Table 6.7

driver off
VBUS = 0V
VBAT= 12V

Param 14

IBUS_PAS_rec 20 µA

driver off
8V<VBAT<18V
8V<VBUS<18V
VBUS > VBAT

Param 15

IBUS_NO_GND
-1 1 mA

Control unit disconnected from ground

GNDDevice = VSUP
0V<VBUS<18V
VBAT = 12V

Loss of local ground must not affect com-
munication in the residual network.

Param 16

IBUS_NO_BAT
100 µA

VBAT disconnected
VSUP_Device = GND

0<VBUS<18V

Node has to sustain the current that can
flow under this condition. Bus must remain
operational under this condition.

Param 17 VBUSdom 0.4 VSUP receiver dominant state

Param 18 VBUSrec 0.6 VSUP receiver recessive state

Param 19 VBUS_CNT 0.475 0.5 0.525 VSUP VBUS_CNT =(Vth_dom+ Vth_rec)/2 e

Param 20 VHYS 0.175 VSUP VHYS = Vth_rec -Vth_dom

Table 6.6: Electrical DC Parameters of the LIN Physical Layer
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 122

Line Driver/
Receiver
6.5.4.1 Electrical AC Parameters
The electrical AC parameters of the LIN Physical Layer are listed in Table 6.8,
Table 6.9, and Table 6.10, with the parameters being defined in Figure 6.5. The elec-
trical AC-Characteristics of the bus can be strongly affected by the line characteristics

Param 21

VSerDiode 0.4 0.7 1.0 V

Voltage Drop at the serial Diodes
Dser_Master and Dser_int in pull up path (Fig-
ure 6.3).
VSerDiode = VANODE - VCATHODE f

Param 22
VShift_BAT 0 11.5% VBAT

Battery-Shift
VShift_BAT = VBATTERY - VShift_GND - VBAT

g

Param 23
VShift_GND 0 11.5% VBAT

GND-Shift
VShift_GND = VGND_ECU - VGND_BATTERY

g

Param 24

VShift_Difference
h 0 8% VBAT

Difference between Battery-Shift and GND-
Shift

VShift_Difference = |VShift_BAT - VShift_GND|

Table 6.7: Parameters of the Pull-Up Resistors

no. parameter min. typ. max. unit comment

Rmaster 900 1000 1100  The serial diode is mandatory (Figure 6.3).

Rslave 20 30 60 K The serial diode is mandatory.

a. VBAT denotes the supply voltage at the connector of the control unit and may be different from
the internal supply VSUP for electronic components (see Section 6.5.2).
b. VSUP denotes the supply voltage at the transceiver inside the control unit and may be different
from the external supply VBAT for control units (see Section 6.5.2).
c. IBUS: Current flowing into the node.
d. A transceiver must be capable to sink at least 40mA. The maximum current flowing into the node
must not exceed 200mA under DC conditions to avoid possible damage.
e. Vth_dom: receiver threshold of the recessive to dominant LIN bus edge.

Vth_rec: receiver threshold of the dominant to recessive LIN bus edge.
f. VANODE: voltage at the anode of the diode. 

VCATHODE: voltage at the cathode of the diode.
g. VBATTERY: voltage across the vehicle battery connectors. 

VGND_ECU: voltage on the local ECU ground connector with respect to vehicle battery ground
connector (VGND_BATTERY).
h. This constraint refers to duty cycle D1 and D2 only.

Param 25

Param 26

no. parameter min. typ. max. unit comment / condition

Table 6.6: Electrical DC Parameters of the LIN Physical Layer
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 123

Line Driver/
Receiver
as shown in Section 6.5.3. The time constant (and thus the overall capacitance) of
the bus (Section 6.5.5) has to be selected carefully in order to allow for a correct sig-
nal implementation under worst case conditions.

The following table (Table 6.8) specifies the timing parameters for proper operation at
20 kBit/sec.

Table 6.8: Driver Electrical AC Parameters of the LIN Physical Layer (20kBit/s)

no. parameter min. typ. max. unit comment / condition

LIN Driver, Bus load conditions (CBUS ; RBUS): 1nF; 1k / 6,8nF;660 / 10nF;500

D1

(Duty Cycle 1)
0.396

THRec(max) = 0.744 x VSUP; 
THDom(max) = 0.581 x VSUP; 
VSUP = 7.0V...18V; tBit = 50µs; 
D1 = tBus_rec(min) / (2 x tBit)

D2

(Duty Cycle 2) 0.581

THRec(min) = 0.422 x VSUP; 
THDom(min) = 0.284 x VSUP; 
VSUP = 7.6V...18V; tBit = 50µs; 
D2 = tBus_rec(max) / (2 x tBit)

For improved EMC performance, exception is granted for speeds of 10.4 kBit/sec or
below. For details see the following table (Table 6.9), which specifies the timing
parameters for proper operation at 10.4 kBit/sec.

Table 6.9: Driver Electrical AC Parameters of the LIN Physical Layer (10.4kBit/s)

no. parameter min. typ. max. unit comment / condition

LIN Driver, Bus load conditions (CBUS ; RBUS): 1nF; 1k / 6,8nF;660 / 10nF;500

D3

(Duty Cycle 3) 0.417

THRec(max) = 0.778 x VSUP; 
THDom(max) = 0.616 x VSUP; 
VSUP = 7.0V...18V; tBit = 96µs; 
D3 = tBus_rec(min) / (2 x tBit)

D4

(Duty Cycle 4) 0.590

THRec(min) = 0.389 x VSUP; 
THDom(min) = 0.251 x VSUP; 
VSUP = 7.6V...18V; tBit = 96µs; 
D4 = tBus_rec(max) / (2 x tBit)

Param 27

Param 28

Param 29

Param 30
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 124

Line Driver/
Receiver
Application specific implementations (ASICs) shall meet the parameters in Table 6.8
and/or Table 6.9. If both sets of parameters are implemented, the proper mode shall
be selected based on the bus bit rate.

Table 6.10: Receiver Electrical AC Parameters of the LIN Physical Layer

no. parameter min. typ. max. unit comment / condition

LIN Receiver, RXD load condition (CRXD): 20pF; (if open drain behavior: Rpull-up = 2.4k)

trx_pd 6 µs propagation delay of receiver

trx_sym -2 2 µs
symmetry of receiver propagation delay
rising edge w.r.t. falling edge

The EMC behavior of the LIN bus depends on the signal shape represented by slew
rate and other factors such as di/dt and d²V/dt². The signal shape should be carefully
selected in order to reduce emissions on the one hand and allow for bit rates up to
20 kBit/sec on the other.

6.5.5 LINE CHARACTERISTICS

The maximum slew rate of rising and falling bus signals are in practice limited by the
active slew rate control of typical bus transceivers. The minimum slew rate for the ri-
sing signal, however, can be given by the RC time constant. Therefore, the bus capac-
itance should be kept low in order to keep the waveform asymmetry small. The capac-
itance of the master module can be chosen higher than in the slave modules, in order
to provide a ’buffer’ in case of network variants with various number of nodes. The
total bus capacitance CBUS can be calculated as:

CBUS = CMASTER + n · CSLAVE + C’LINE · LENBUS (13)

the RC time constant is calculated as:

= CBUS ·RBUS (14)

with:

RBUS = RMaster || RSlave1 || RSlave2 || ... || RSlave_n (15)

Param 31

Param 32
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 125

Line Driver/
Receiver
under consideration of the

Table 6.11: Line Characteristics and Parameters.

no. description parameter min typ. max unit

total capacitance of the bus including
slave and master capacitances

CBUS 1 4 10 nF

time constant of overall system  1 5 µs

capacitance of master node CMASTER 220 pF

capacitance of slave node CSLAVE 220 250 pF

line capacitance C’LINE 100 150 pF/m

parameters given in Table 6.11.

CMASTER and CSLAVE are defining the total node capacitance at the connector of an
ECU including the physical bus driver (Transceiver) and all other components applied
to the LIN bus pin like capacitors or protection circuitry.
The number of nodes in a LIN cluster should not exceed 16. The network impedance
may prohibit a fault free communication under worst case conditions with more than
16 nodes. Every additional node lowers the network resistance by approximately 3%
(30 k || ~1 k)

6.5.6 PERFORMANCE IN NON-OPERATION SUPPLY VOLTAGE RANGE
For VBAT > 18V or VBAT < 8V the ECU may still operate, but communication is not
guaranteed. If an ECU is not intending to transmit on the LIN bus (e.g. transmit input
of a LIN transceiver is recessive), the LIN driver shall not drive the LIN bus to domi-
nant state. If the LIN bus is in recessive state, the LIN receiver output shall provide a
recessive state.

6.5.7 PERFORMANCE DURING FAULT MODES
All LIN device state changes on conditional events (e.g. temperature shutdown) shall
be specified in the LIN device data sheet.

6.5.7.1 Loss of supply voltage connection or ground connection
ECUs with loss of connection to either supply voltage or ground shall not interfere with
normal communication among the remaining LIN participants. Upon return of connec-
tion, normal operation shall resume without any intervention on the LIN bus line.

Param 33 total length of bus line LENBUS 40 m

Param 34

Param 35

Param 36

Param 37

Param 38
Website: www.lin-subbus.org

LIN Physical Layer Spec
Revision 2.2A

December 31, 2010; Page 126

Line Driver/
Receiver
6.5.7.2 Bus wiring short to battery or ground
The network data communication may be interrupted but there shall be no damage to
any ECU when the LIN bus line is shorted to either positive battery with less than
26.5 V or ground. Upon remove of the fault, normal operation shall resume without
any intervention on the LIN bus line.

6.5.8 ESD/EMI COMPLIANCE
Semiconductor Physical Layer devices must comply with requirements for protection
against human body discharge according to IEC 61000-4-2:1995. The minimum dis-
charge voltage level ± 2000 V.

The required ESD level for automotive applications can be up to ± 8000 V at the con-
nectors of the ECU.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 127
LIN
 Application Program Interface Specification

Revision 2.2A

© LIN Consortium, 2010.

This specification as released by the LIN Consortium is intended for the purpose of
information only and is provided on an "AS IS" basis only and cannot be the basis for
any claims. The LIN Consortium will not be liable for any use of this Specification. The
unauthorized use, e.g. copying, displaying or other use of any content from this docu-
ment is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®. All rights reserved.
All distributions are registered.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 128

Introduction
7.1 INTRODUCTION
The LIN API is a network software layer that hides the details of a LIN network config-
uration (e.g. how signals are mapped into certain frames) for a user making an appli-
cation program for an arbitrary ECU. Instead the user will be provided an API, which is
focused on the signals transported on the LIN network. A tool is used to take care of
the step from network configuration to ready made program code. This will provide the
user with configuration flexibility.

This document defines a mandatory interface to a software LIN device driver imple-
mented in the C programming language. Thus, hardware implementations are not
standardized nor are implementations in other programming languages.

7.1.0.1 LIN cluster generation

Normally the LDF (see Configuration Language Specification) is parsed by a tool and
generates a configuration for the LIN device driver. The NCF (see Node Capability
Language Specification) is normally not used in this process since its intention is to
describe an hardware slave node, and therefore, does not need the API.

See Section 1.1.3 for a description of the workflow and the roles of the LDF and NCF.

7.1.1 CONCEPT OF OPERATION

The API is split in three sections:

• LIN core API

• LIN node configuration and identification API

• LIN transport layer API (optional)

7.1.1.1 LIN core API

The LIN core API handles initialization, processing and a signal based interaction
between the application and the LIN core. This implies that the application does not
have to bother with frames and transmission of frames. Notification exists to detect
transfer of a specific frame if this is necessary, see Section 7.2.3. Of course, API calls
to control the LIN core also exist.

Two versions exist of most of the API calls:

• Static calls embed the name of the signal or interface in the name of the call.

• Dynamic calls provide the signal or interface as a parameter.

The choice between the two is a matter of taste.

The behavior of the LIN core API is defined in the Protocol Specification.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 129

Introduction
Note that the named objects (signals, schedules) defined in the LDF may extend their
names with the channel postfix name, see Section 9.2.1.4.

7.1.1.2 LIN node configuration and identification API

The LIN node configuration and identification API is request/response (service)
based, i.e. the application in the master node calls an API routine that transmits a
request to the specified slave node and awaits a response. The slave node device
driver handles the service automatically.

The behavior of the LIN node configuration and identification API is covered in the
Node configuration and Identification Specification.

7.1.1.3 LIN transport layer API

The LIN transport layer is message based. Its intended use is to work as a transport
layer for messages to a diagnostic message parser outside of the LIN device driver.
Two exclusively alternative APIs exist, one raw that allows the application to control
the contents of every frame sent and one cooked that performs the full transport layer
function.

The behavior of the LIN transport layer API is covered in the Transport Layer Specifi-
cation.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 130

Core API
7.2 CORE API
The LIN core API has a set of functions all based on the idea to give the API a sepa-
rate name space, in order to minimize the risk of conflicts with existing software. All
functions and types will have the prefix "l_" (lowercase "L" followed by an "under-
score").

The LIN core shall define the following types:

• l_bool - 0 is false, and non-zero (>0) is true

• l_ioctl_op - Implementation dependent

• l_irqmask - Implementation dependent

• l_u8 - Unsigned 8 bit integer

• l_u16 - Unsigned 16 bit integer

In order to gain efficiency, the majority of the functions will be static functions (no
parameters are needed, since one function exist per signal, per interface, etc.).

7.2.1 DRIVER AND CLUSTER MANAGEMENT

7.2.1.1 l_sys_init

Prototype
l_bool l_sys_init (void);

Availability
Master and slave nodes.

Description

l_sys_init performs the initialization of the LIN core. The scope of the initialization is
the physical node (i.e. the complete node), see Section 9.2.2.3.

The call to the l_sys_init is the first call a user must use in the LIN core before using
any other API functions.

The function returns:

Zero If the initialization succeeded.
Non-zero If the initialization failed.

7.2.2 SIGNAL INTERACTION

In all signal API calls below the sss is the name of the signal, e.g.
l_u8_rd_EngineSpeed ().
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 131

Core API
7.2.2.1 Signal types

The signals will be of three different types:
l_bool for one bit signals; zero if false, non-zero otherwise
l_u8 for signals of the size 2 - 8 bits
l_u16 for signals of the size 9 - 16 bits

7.2.2.2 Scalar signal read

Dynamic prototype
l_bool l_bool_rd (l_signal_handle sss);
l_u8 l_u8_rd (l_signal_handle sss);
l_u16 l_u16_rd (l_signal_handle sss);

Static prototype
l_bool l_bool_rd_sss (void);
l_u8 l_u8_rd_sss (void);
l_u16 l_u16_rd_sss (void);

Availability
Master and slave nodes.

Description
Reads and returns the current value of the signal.

Reference

Protocol Specification, Section 2.2.

7.2.2.3 Scalar signal write

Dynamic prototype
void l_bool_wr (l_signal_handle sss, l_bool v);
void l_u8_wr (l_signal_handle sss, l_u8 v);
void l_u16_wr (l_signal_handle sss, l_u16 v);

Static prototype
void l_bool_wr_sss (l_bool v);
void l_u8_wr_sss (l_u8 v);
void l_u16_wr_sss (l_u16 v);

Availability
Master and slave nodes.

Description
Sets the current value of the signal to v.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 132

Core API
Reference

Protocol Specification, Section 2.2.

7.2.2.4 Byte array read

Dynamic prototype
void l_bytes_rd (l_signal_handle sss,
 l_u8 start, /* first byte to read from */
 l_u8 count, /* number of bytes to read */
 l_u8* const data); /* where data will be written */

Static prototype
void l_bytes_rd_sss (l_u8 start,
 l_u8 count,
 l_u8* const data);

Availability
Master and slave nodes.

Description
Reads and returns the current values of the selected bytes in the signal.

The sum of start and count shall never be greater than the length of the byte array.

Example
Assume that a byte array is 6 bytes long, numbered 0 to 5. Reading byte 2 and 3 from
this array requires start to be 2 (skipping byte 0 and 1) and count to be 2 (reading byte
2 and 3). In this case byte 2 is written to data[0] and byte 3 is written to data[1].

Reference

Protocol Specification, Section 2.2.

7.2.2.5 Byte array write

Dynamic prototype
void l_bytes_wr (l_signal_handle sss,
 l_u8 start, /* first byte to write to */
 l_u8 count, /* number of bytes to write */
 const l_u8* const data); /* where data is read from */

Static implementation
void l_bytes_wr_sss (l_u8 start,
 l_u8 count,
 const l_u8* const data);

Where sss is the name of the signal, e.g. l_bytes_wr_EngineSpeed (..).
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 133

Core API
Availability
Master and slave nodes.

Description
Sets the current value of the selected bytes in the signal specified by the name sss to
the value specified.

The sum of start and count shall never be greater than the length of the byte array,
although the device driver may choose not to enforce this in runtime.

Example
Assume that a byte array is 7 bytes long, numbered 0 to 6. Writing byte 3 and 4 from
this array requires start to be 3 (skipping byte 0, 1 and 2) and count to be 2 (writing
byte 3 and 4). In this case byte 3 is read from data[0] and byte 4 is read from data[1].

Reference

Protocol Specification, Section 2.2.

7.2.3 NOTIFICATION

Flags are local objects in a node and they are used to synchronize the application pro-
gram with the LIN core. The flags will be automatically set by the LIN core and can
only be tested or cleared by the application program. Flags may be attached to all
types of frames. A flag is set when the frame/signal is considered to be transmitted
respectively received, see Section 2.2.4.

Three types of flags can be created:

• A flag that is attached to a signal

• A flag that is attached to a frame

• A flag that is attached to a signal in a particular frame. This is used when a
signal is packed into multiple frames

All three listed flag types above are applicable on both transmitted and received sig-
nals/frames.

7.2.3.1 l_flg_tst

Dynamic prototype
l_bool l_flg_tst (l_flag_handle fff);

Static implementation
l_bool l_flg_tst_fff (void);

Where fff is the name of the flag, e.g. l_flg_tst_RxEngineSpeed ().
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 134

Core API
Availability
Master and slave nodes.

Description
Returns a C boolean indicating the current state of the flag specified by the name fff,
i.e. returns zero if the flag is cleared, non-zero otherwise.

Reference

No reference, flags are API specific and not described anywhere else.

Example
A flag, named txconfirmation, is attached to a published signal valve_position stored
in the IO_1 frame. The static implementation of the l_flg_tst will be:

l_bool l_flg_tst_txconfirmation (void);

The flag will be set when the IO_1 frame (containing the signal valve_position) is suc-
cessfully transmitted from the node.

7.2.3.2 l_flg_clr

Dynamic prototype
void l_flg_clr (l_flag_handle fff);

Static implementation
void l_flg_clr_fff (void);

Where fff is the name of the flag, e.g. l_flg_clr_RxEngineSpeed ().

Availability
Master and slave nodes.

Description
Sets the current value of the flag specified by the name fff to zero.

Reference

No reference, flags are API specific and not described anywhere else.

7.2.4 SCHEDULE MANAGEMENT

7.2.4.1 l_sch_tick

Dynamic prototype
l_u8 l_sch_tick (l_ifc_handle iii);
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 135

Core API
Static implementation
l_u8 l_sch_tick_iii (void);

Where iii is the name of the interface, e.g. l_sch_tick_MyLinIfc ().

Availability
Master nodes only.

Description
The l_sch_tick function follows a schedule. When a frame becomes due, its transmis-
sion is initiated. When the end of the current schedule is reached, l_sch_tick starts
again at the beginning of the schedule.

The l_sch_tick must be called periodically and individually for each interface within the
node. The period is the time base, see Section 2.4, set in the LDF, see
Section 9.2.2.1. The period of the l_sch_tick call effectively sets the time base tick,
see Section 2.4. Therefore it is essential that the time base period is uphold with mini-
mum jitter.

The call to l_sch_tick will not only start the transition of the next frame due, it will also
update the signal values for those signals received since the previous call to
l_sch_tick, see Section 2.2.4.

The function returns:

Non-zero if the next call of l_sch_tick will start the transmission of the frame in the
next schedule table entry. The return value will in this case be the next
schedule table entry's number (counted from the beginning of the sched-
ule table) in the schedule table. The return value will be in range 1 to N if
the schedule table has N entries.

Zero if the next call of l_sch_tick will not start transmission of a frame.

Reference

Protocol Specification, Section 2.4.

7.2.4.2 l_sch_set

Dynamic prototype
void l_sch_set (l_ifc_handle iii,
 l_schedule_handle schedule,
 l_u8 entry);

Static implementation
void l_sch_set_iii (l_schedule_handle schedule, l_u8 entry);

Where iii is the name of the interface, e.g. l_sch_set_MyLinIfc (MySchedule1, 0).
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 136

Core API
Availability
Master node only.

Description
Sets up the next schedule to be followed by the l_sch_tick function for a certain inter-
face iii. The new schedule will be activated as soon as the current schedule reaches
its next schedule entry point. The extension “_iii“ is the interface name. It is optional
and the intention is to solve naming conflicts when the node is a master on more than
one LIN cluster.

The entry defines the starting entry point in the new schedule table. The value should
be in the range 0 to N if the schedule table has N entries, and if entry is 0 or 1 the new
schedule table will be started from the beginning.

A predefined schedule table, L_NULL_SCHEDULE, shall exist and may be used to
stop all transfers on the LIN cluster.

Reference

Protocol Specification, Section 2.4.

Example
A possible use of the entry value is in combination with the l_sch_tick return value to
temporarily interrupt one schedule with another schedule table, and still be able to
switch back to the interrupted schedule table at the point where this was interrupted.

7.2.5 INTERFACE MANAGEMENT

These calls manages the specific interfaces (the logical channels to the bus). Each
interface is identified unique by its interface name, denoted by the iii extension for
each API call. How to set the interface name (iii) is not in the scope of this specifica-
tion.

7.2.5.1 l_ifc_init

Dynamic prototype
l_bool l_ifc_init (l_ifc_handle iii);

Static implementation
l_bool_ifc_init_iii (void);

Where iii is the name of the interface, e.g. l_ifc_init_MyLinIfc ().

Availability
Master and slave nodes.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 137

Core API
Description
l_ifc_init initializes the controller specified by the name iii, i.e. sets up internal functions
such as the baud rate. The default schedule set by the l_ifc_init call will be the
L_NULL_SCHEDULE where no frames will be sent and received.

This is the first call a user must perform, before using any other interface related LIN
API functions.

The function returns zero if the initialisation was successful and non-zero if failed.

Reference

A general description of the interface concept is found in Section 1.1.5.

7.2.5.2 l_ifc_goto_sleep

Dynamic prototype
void l_ifc_goto_sleep (l_ifc_handle iii);

Static implementation
void l_ifc_goto_sleep_iii (void);

Where iii is the name of the interface, e.g. l_ifc_goto_sleep_MyLinIfc ().

Availability
Master node only.

Description
This call requests slave nodes on the cluster connected to the interface to enter bus
sleep mode by issuing one go to sleep command, see Section 7.2.5.8.

The go to sleep command will be scheduled latest when the next schedule entry is
due.

The l_ifc_goto_sleep will not affect the power mode. It is up to the application to do
this.

If the go to sleep command was successfully transmitted on the cluster the go to sleep
bit will be set in the status register, see Section 7.2.5.8.

Reference

Protocol Specification, Section 2.6.3.

7.2.5.3 l_ifc_wake_up

Dynamic prototype
void l_ifc_wake_up (l_ifc_handle iii);
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 138

Core API
Static implementation
void l_ifc_wake_up_iii (void);

Where iii is the name of the interface, e.g. l_ifc_wake_up_MyLinIfc ().

Availability
Master and slave nodes.

Description
The function will transmit one wake up signal. The wake up signal will be transmitted
directly when this function is called. It is the responsibility of the application to retrans-
mit the wake up signal according to the wake up sequence defined in Section 2.6.2.

Reference

Protocol Specification, Section 2.6.2.

7.2.5.4 l_ifc_ioctl

Dynamic prototype
l_u16 l_ifc_ioctl (l_ifc_handle iii, l_ioctl_op op, void* pv);

Static implementation
l_u16 l_ifc_ioctl_iii (l_ioctl_op op, void* pv);

Where iii is the name of the interface, e.g. l_ifc_ioctl_MyLinIfc (MyOp, &MyPars).

Availability
Master and slave nodes.

Description
This function controls functionality that is not covered by the other API calls. It is used
for protocol specific parameters or hardware specific functionality. Example of such
functionality can be to switch on/off the wake up signal detection.

The iii is the name of the interface to which the operation defined in op should be
applied. The pointer pv points to an optional parameter that may be provided to the
function.

Exactly which operations that are supported are implementation dependent.

Reference

No reference, the behavior is API specific and not described anywhere else.

7.2.5.5 l_ifc_rx

Dynamic prototype
void l_ifc_rx (l_ifc_handle iii);
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 139

Core API
Static implementation
void l_ifc_rx_iii (void);

Where iii is the name of the interface, e.g. l_ifc_rx_MyLinIfc ().

Availability
Master and slave nodes.

Description
The application program is responsible for binding the interrupt and for setting the cor-
rect interface handle (if interrupt is used).

For UART based implementations it may be called from a user-defined interrupt han-
dler triggered by a UART when it receives one character of data. In this case the func-
tion will perform necessary operations on the UART control registers.

For more complex LIN hardware it may be used to indicate the reception of a com-
plete frame.

Reference

No reference, the behavior is API specific and not described anywhere else.

7.2.5.6 l_ifc_tx

Dynamic prototype
void l_ifc_tx (l_ifc_handle iii);

Availability
Master and slave nodes.

Static implementation
void l_ifc_tx_iii (void);

Where iii is the name of the interface, e.g. l_ifc_tx_MyLinIfc ().

Description
The application program is responsible for binding the interrupt and for setting the cor-
rect interface handle (if interrupt is used).

For UART based implementations it may be called from a user-defined interrupt han-
dler triggered by a UART when it has transmitted one character of data. In this case
the function will perform necessary operations on the UART control registers.

For more complex LIN hardware it may be used to indicate the transmission of a com-
plete frame.

Reference
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 140

Core API
No reference, the behavior is API specific and not described anywhere else.

7.2.5.7 l_ifc_aux

Dynamic prototype
void l_ifc_aux (l_ifc_handle iii);

Static implementation
void l_ifc_aux_iii (void);

Where iii is the name of the interface, e.g. l_ifc_aux_MyLinIfc ().

Availability
Master and slave nodes.

Description
This function may be used in the slave nodes to synchronize to the break/sync field
sequence transmitted by the master node on the interface specified by iii.

It may, for example, be called from a user-defined interrupt handler raised upon a
flank detection on a hardware pin connected to the interface iii.

l_ifc_aux may only be used in a slave node.

This function is strongly hardware connected and the exact implementation and usage
is implementation dependent.

This function might even be empty in cases where the break/sync field sequence
detection is implemented in the l_ifc_rx function.

Reference

No reference, the behavior is API specific and not described anywhere else.

7.2.5.8 l_ifc_read_status

Dynamic prototype
l_u16 l_ifc_read_status (l_ifc_handle iii);

Static implementation
l_u16 l_ifc_read_status_iii (void);

Where iii is the name of the interface, e.g. l_ifc_read_status_MyLinIfc ().

Availability
Master and slave nodes. The behavior is different for master and slave nodes, see
description below.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 141

Core API
Description
This function will return the status of the previous communication. The call returns the
status word (16 bit value), as shown in Table 7.1.

Table 7.1: Return value of l_ifc_read_status (bit 15 is MSB, bit 0 is LSB).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Last frame PID 0
Save

configu-
ration

Event trig-
gered frame

collision

Bus
activity

Go to
sleep

Overrun
Successful

transfer
Error in

response

The status word is only set based on a frame transmitted or received by the node
(except bus activity).

The call is a read-reset call; meaning that after the call has returned, the status word is
set to 0.

In the master node the status word will be updated in the l_sch_tick function. In the
slave node the status word is updated latest when the next frame is started.

Error in response is set if a frame error is detected in the frame response, e.g.
checksum error, framing error, etc. An error in the header results in the header not
being recognized and thus, the frame is ignored. It will not be set if there was no
response on a received frame. Also, it will not be set if there is an error in the
response (collision) of an event triggered frame.

Successful transfer is set if a frame has been transmitted/received without an error.

Overrun is set if two or more frames are processed since the previous call to
l_ifc_read_status. If this is the case, error in response and successful transfer repre-
sent logical ORed values for all processed frames.

Go to sleep is set in a slave node if a go to sleep command has been received, and
set in a master node when the go to sleep command is successfully transmitted on the
bus. After receiving the go to sleep command the power mode will not be affected.
This must be done in the application.

Bus activity will be set if the node has detected bus activity on the bus. See
Section 2.6.3 for definition of bus activity. A slave node is required to enter bus sleep
mode after a period of bus inactivity on the bus, see Section 2.6.3. This can be imple-
mented by the application monitoring the bus activity. Note the difference between bus
activity and bus inactivity.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 142

Core API
Event triggered frame collision is set as long the collision resolving schedule is exe-
cuted. The intention is to use it in parallel with the return value from l_sch_tick. In the
slave, this bit will always be 0 (zero). If the master node application switches schedule
table during the collision is resolved the event triggered frame collision flag will be set
to 0 (zero). See example below how this flag is set.

Save configuration is set when the save configuration request, see Section 4.2.5.4,
has been successfully received. It is set only in the slave node, in the master node it is
always 0 (zero).

Last frame PID is the PID last detected on the bus and processed in the node. If over-
run is set one or more values of last frame PID are lost; only the latest value is main-
tained. It is set simultaneously with successful transfer or error in response.

The combination of the two status bits successful transfer and error in response is
interpreted according to Table 7.2.

Table 7.2: Node internal error interpretation.

error in
response

successful
transfer

Interpretation

0 0 No communication or no response

1 1
Intermittent communication

(some successful transfers and some failed)

0 1 Full communication

1 0 Erroneous communication (only failed transfers)

It is the responsibility of the node application to process the individual status reports.

Reference

Protocol Specification, Section 2.7.

Example 1
The l_ifc_read_status is designed to allow reading at a much lower frequency than the
frame slot frequency, e.g. once every 50 frame slots. In this case, the last frame PID
has little use. Overrun is then used as a check that the traffic is running as it should,
i.e. is shall always be set.

It is, however, also possible to call l_ifc_read_status every frame slot and get a much
better error statistics; you can see the protected identifier of the failing transfers and
by knowing the topology, it is possible to draw better conclusion of faulty nodes. This
is maybe most useful in the master node, but is also possible in any slave node.

Example 2

This example shows how the event triggered flag behaves in case of a collision
resolving.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 143

Core API
The normal schedule table is dep

Table 7.3: Event triggered frame example schedule table

frame delay frame type

UF1 10 ms unconditional

IO_check 10 ms event triggered

UF2 10 ms unconditional

icted in Table 7.3.

The IO_1 and IO_2 unconditional frames are associated with check_IO. The collision
solving schedule table contains the unconditional frames IO_1 and IO_2 (with delays
set to10 ms). The collision will be handled as shown in Figure 7.1. The time base in
this example is set to 5 ms.

Master node transmits header

UF1 IO_2 UF2

of check_IO but both slave nodes
responded, i.e. a collision occurs

IO_1

The master node switches
automatically to the collision

And switches automatically

0 1 0 2 00 3 0 12

0 0 1 1 10 1 0 00

Return value of
l_sch_tick

Event triggered frame

solving schedule table
back to the normal schedule
table

flag - the l_ifc_read_status
called directly after
l_sch_tick

Figure 7.1: Event triggered frame collision solving example

7.2.6 USER PROVIDED CALL-OUTS

The application must provide a pair of functions, which may (implementation depen-
dent) be called from within the LIN module in order to disable LIN communication
interrupts before certain internal operations, and to restore the previous state after
such operations. These functions can, for example, be used in the l_sch_tick function.
The application itself may also make use of these functions.

7.2.6.1 l_sys_irq_disable

Dynamic prototype
l_irqmask l_sys_irq_disable (void);
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 144

Core API
Availability
Master and slave nodes.

Description
The user implementation of this function must achieve a state in which no interrupts
from the LIN communication can occur.

Reference

No reference, the behavior is API specific and not described anywhere else.

7.2.6.2 l_sys_irq_restore

Dynamic prototype
void l_sys_irq_restore (l_irqmask previous);

Availability
Master and slave nodes.

Description
The user implementation of this function must restore the interrupt level identified by
the provided l_irqmask previous.

Reference

No reference, the behavior is API specific and not described anywhere else.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 145

Node configuration
and identification
7.3 NODE CONFIGURATION AND IDENTIFICATION
The node configuration and diagnostic API has a set of functions all based on the idea
to give the API a separate name space, in order to minimize the risk of conflicts with
existing software. All functions and types will have the prefix "ld_" (lowercase "LD" fol-
lowed by an "underscore").

For operation of the node configuration the master request frame and slave response
frame must be scheduled. If the master node does not regard the responses of the
requests only the master request frame is contained in the schedule table.

7.3.1 NODE CONFIGURATION

7.3.1.1 ld_is_ready

Dynamic prototype
l_u8 ld_is_ready (l_ifc_handle iii);

Availability
Master node only.

Description
This call returns the status of the last requested configuration service. The return val-
ues are interpreted as follows:

LD_SERVICE_BUSY Service is ongoing.

LD_REQUEST_FINISHED The configuration request has been completed. This is a
intermediate status between the configuration request
and configuration response.

LD_SERVICE_IDLE The configuration request/response combination has
been completed, i.e. the response is valid and may be
analyzed. Also, this value is returned if no request has
yet been called.

LD_SERVICE_ERROR The configuration request or response experienced an
error. Error here means error on the bus, and not a neg-
ative configuration response from the slave node.

The following Figure 7.2 shows the situation where a successful configuration request
and configuration response is made. Note that the state change after the master
request frame and slave response frame are finished may be delayed up to one time
base.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 146

Node configuration
and identification
Slave Response FrameMaster Request Frame

LD_REQUEST_FINISHED LD_SERVICE_IDLELD_SERVICE_BUSYLD_SERVICE_IDLE

Configuration service called

Figure 7.2: Successful configuration request and configuration response

Reference

No reference, the behavior is API specific and not described anywhere else.

7.3.1.2 ld_check_response

Dynamic prototype
void ld_check_response (l_ifc_handle iii,
 l_u8* const RSID,
 l_u8* const error_code);

Availability
Master node only.

Description
This call returns the result of the last node configuration service, in the parameters
RSID and error_code. A value in RSID is always returned but not always in the
error_code. Default values for RSID and error_code is 0 (zero).

Reference

No reference, the behavior is API specific and not described anywhere else.

7.3.1.3 ld_assign_frame_id_range

Dynamic prototype
void ld_assign_frame_id_range (l_ifc_handle iii,
 l_u8 NAD,
 l_u8 start_index,
 const l_u8* const PIDs);

Availability
Master node only.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 147

Node configuration
and identification
Description
This call assigns the protected identifier of up to four frames in the slave node with the
addressed NAD. The PIDs parameter shall be four bytes long, each byte shall contain
a PID, do not care or unassign value.

Reference

See the definition of the service assign frame id range, Section 4.2.5.5.

7.3.1.4 ld_assign_NAD

Dynamic prototype
void ld_assign_NAD (l_ifc_handle iii,
 l_u8 initial_NAD,
 l_u16 supplier_id,
 l_u16 function_id,
 l_u8 new_NAD);

Availability
Master node only.

Description
This call assigns the NAD (node diagnostic address) of all slave nodes that matches
the initial_NAD, the supplier ID and the function ID. The new NAD of the slave node
will be new_NAD.

Reference

See the definition of the service assign NAD, Section 4.2.5.1.

7.3.1.5 ld_save_configuration

Dynamic prototype

void ld_save_configuration (l_ifc_handle iii,
 l_u8 NAD);

Availability
Master node only.

Description
This call will make a save configuration request to a specific slave node with the given
NAD, or to all slave nodes if NAD is set to broadcast.

Reference

See the definition of the service save configuration, Section 4.2.5.4. API call
l_ifc_read_status, Section 7.2.5.8. See also the example in Section 7.5.2.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 148

Node configuration
and identification
7.3.1.6 ld_read_configuration

Dynamic prototype

l_u8 ld_read_configuration (l_ifc_handle iii,
 l_u8* const data,
 l_u8* const length);

Availability
Slave node only.

Description
This function will not transport anything on the bus.

This call will serialize the current configuration and copy it to the area (data pointer)
provided by the application. The intention is to call this function when the save config-
uration request flag is set in the status register, see Section 7.2.5.8. After the call is
finished the application is responsible to store the data in appropriate memory.

The caller shall reserve bytes in the data area equal to length, before calling this func-
tion. The function will set the length parameter to the actual size of the configuration.
In case the data area is too short the function will return with no action.

In case the NAD has not been set by a previous call to ld_set_configuration or the
master node has used the configuration services, the returned NAD will be the initial
NAD.

The data contains the NAD and the PIDs and occupies one byte each. The structure
of the data is: NAD and then all PIDs for the frames. The order of the PIDs are the
same as the frame list in the LDF, Section 9.2.2.2, and NCF, Section 8.2.5.

The function returns:

LD_READ_OK If the service was successful.

LD_LENGTH_TOO_SHORT If the configuration size is greater than the length. It
means that the data area does not contain a valid
configuration.

Reference

See the definition of the service save configuration, Section 4.2.5.4. Function
l_ifc_read_status, Section 7.2.5.8. See also the example in Section 7.5.2.

7.3.1.7 ld_set_configuration

Dynamic prototype
l_u8 ld_set_configuration (l_ifc_handle iii,
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 149

Node configuration
and identification
 const l_u8* const data,
 l_u16 length);

Availability
Slave node only.

Description
This call will not transport anything on the bus.

The function will configure the NAD and the PIDs according to the configuration given
by data. The intended usage is to restore a saved configuration or set an initial config-
uration (e.g. coded by I/O pins). The function shall be called after calling l_ifc_init.

The caller shall set the size of the data area before calling the function.

The data contains the NAD and the PIDs and occupies one byte each. The structure
of the data is: NAD and then all PIDs for the frames. The order of the PIDs are the
same as the frame list in the LDF, Section 9.2.2.2, and NCF, Section 8.2.5.

The function returns:

LD_SET_OK If the service was successful.

LD_LENGTH_NOT_CORRECT If the required size of the configuration is not equal
to the given length.

LD_DATA_ERROR The set of configuration could not be made.

Reference

See the definition of the service save configuration, Section 4.2.5.4. Function
l_ifc_read_status, Section 7.2.5.8. See also the example in Section 7.5.2.

7.3.2 ld_conditional_change_NAD

Dynamic prototype
void ld_conditional_change_NAD (l_ifc_handle iii,
 l_u8 NAD,
 l_u8 id,
 l_u8 byte,
 l_u8 mask,
 l_u8 invert,
 l_u8 new_NAD);

Availability
Master node only.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 150

Node configuration
and identification
Description
This call changes the NAD if the node properties fulfil the test specified by id, byte,
mask and invert.

Id shall be in the range 0 to 31, see Table 4.20, and byte in the range 1 to 5 (specifying
the byte to use in the id). Mask and Invert shall have values between 0 and 255.

Reference

See the definition of the service conditional change NAD, Section 4.2.5.2.

7.3.3 IDENTIFICATION

7.3.3.1 ld_read_by_id

Dynamic prototype
void ld_read_by_id (l_ifc_handle iii,
 l_u8 NAD,
 l_u16 supplier_id,
 l_u16 function_id,
 l_u8 id,
 l_u8* const data);

Availability
Master node only.

Description
The call requests the slave node selected with the NAD to return the property associ-
ated with the id parameter, see Table 4.19 in the Node configuration and Identification
Specification, for interpretation of the id. When the next call to ld_is_ready returns
LD_SERVICE_IDLE (after the ld_read_by_id is called), the RAM area specified by
data contains between one and five bytes data according to the request.

The result is returned in a big-endian style. It is up to little-endian CPUs to swap the
bytes, not the LIN diagnostic driver. The reason for using big-endian data is to simplify
message routing to a (e.g. CAN) back-bone network.

Reference

Node configuration and Identification Specification, Section 4.2.6.1.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 151

Node configuration
and identification
7.3.3.2 ld_read_by_id_callout

Dynamic prototype
l_u8 ld_read_by_id_callout (l_ifc_handle iii,
 l_u8 id,
 l_u8* data);

Availability
This callout is optional and is available in slave node only. In case the user defined
read by identifier request is used, the slave node application must implement this call-
out.

Description
This callout is used when the master node transmits a read by identifier request with
an identifier in the user defined area. The slave node application will be called from
the driver when such request is received.

The id parameter is the identifier in the user defined area (32 to 63), see Table 4.19,
from the read by identifier configuration request.

The data pointer points to a data area with 5 bytes. This area will be used by the appli-
cation to set up the positive response, see the user defined area in Table 4.20.

The driver will act according to the following return values from the application:

LD_NEGATIVE_RESPONSE The slave node will respond with a negative
response as defined in Table 4.21. In this
case the data area is not considered.

LD_POSTIVE_RESPONSE The slave node will setup a positive
response using the data provided by the
application.

LD_NO_RESPONSE The slave node will not answer.

Reference

Node configuration and Identification Specification, Section 4.2.6.1.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 152

Transport layer
7.4 TRANSPORT LAYER
The LIN transport layer API has a set of functions all based on the idea to give the API
a separate name space, in order to minimize the risk of conflicts with existing soft-
ware. All functions and types will have the prefix "ld_" (lowercase "LD" followed by an
"underscore").

Use of the LIN diagnostic transport layer API requires knowledge of the underlaying
protocol. The relevant information can be found in the Transport Layer Specification.

LIN diagnostic transport layer is intended to transport diagnostic requests/responds
between a test equipment on a (e.g. CAN) back-bone network to LIN slave nodes via
the master node.

7.4.1 RAW AND COOKED API

Since ISO 15765-2 [2] PDUs on CAN are quite similar to LIN diagnostic frames, a raw
API is provided. The raw API is frame/PDU based and it is up to the application to
manage the PCI information. The idea of the raw API is to interface to the CAN trans-
port layer. With small efforts and resources the raw API can be used to gateway diag-
nostic requests/responds between CAN and LIN.

The cooked API is message based. The application will provide a pointer to a mes-
sage buffer. When the transfer commences, the LIN driver will do the packing/unpack-
ing, i.e. act as a transport layer. Typically, this is useful in slave nodes since they shall
not gateway the messages but parse them.

Both raw API and the cooked API uses the same structure of the diagnostic frames,
i.e. PCI, SID, NAD etc.

It is possible to use both the raw API and cooked API in a node. However, The behav-
ior of the system is undefined in the case where the application tries to process
frames using both the raw and the cooked API.

7.4.2 INITIALIZATION

Dynamic prototype
void ld_init (l_ifc_handle iii);

Availability
Master and slave nodes.

Description
This call will (re)initialize the raw and the cooked layers on the interface iii.

All transport layer buffers will be initialized.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 153

Transport layer
If there is an ongoing diagnostic frame transporting a cooked or raw message on the
bus, it will not be aborted.

Reference

No reference, the behavior is API specific and not described anywhere else.

7.4.3 RAW API

The raw API is operating on PDU level and it is typically used to gateway PDUs
between CAN and LIN. Usually, a FIFO is used to buffer PDUs in order to handle the
different bus speeds.

7.4.3.1 ld_put_raw

Dynamic prototype
void ld_put_raw (l_ifc_handle iii,
 const l_u8* const data);

Availability
Master and slave nodes.

Description
The call queues the transmission of 8 bytes of data in one frame.

The data is sent in the next suitable frame (master request frame for master nodes
and slave response frame for slave nodes).

The data area will be copied in the call, the pointer will not be memorized.

If no more queue resources are available, the data may be jettisoned and the appro-
priate error status will be set.

Reference

The raw and cooked is not differentiated outside the API. A general description of the
transport layer can be found in Transport Layer Specification.

7.4.3.2 ld_get_raw

Dynamic prototype
void ld_get_raw (l_ifc_handle iii,
 l_u8* const data);

Availability
Master and slave nodes.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 154

Transport layer
Description
The call copies the oldest received diagnostic frame data to the memory specified by
data.

The data returned is received from master request frame for slave nodes and slave
response frame for master nodes.

If the receive queue is empty no data will be copied.

Reference

The raw and cooked is not differentiated outside the API. A general description of the
transport layer can be found in Transport Layer Specification.

7.4.3.3 ld_raw_tx_status

Dynamic prototype
l_u8 ld_raw_tx_status (l_ifc_handle iii);

Availability
Master and slave nodes.

Description
The call returns the status of the raw frame transmission function:

LD_QUEUE_EMPTY The transmit queue is empty. In case previous calls to
ld_put_raw, all frames in the queue have been trans-
mitted.

LD_QUEUE_AVAILABLE The transmit queue contains entries, but is not full.

LD_QUEUE_FULL The transmit queue is full and can not accept further
frames.

LD_TRANSMIT_ERROR LIN protocol errors occurred during the transfer; ini-
tialize and redo the transfer.

Reference

The raw and cooked is not differentiated outside the API. A general description of the
transport layer can be found in Transport Layer Specification.

7.4.3.4 ld_raw_rx_status

Dynamic prototype
l_u8 ld_raw_rx_status (l_ifc_handle iii);
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 155

Transport layer
Availability
Master and slave nodes.

Description
The call returns the status of the raw frame receive function:

LD_NO_DATA The receive queue is empty.

LD_DATA_AVAILABLE The receive queue contains data that can be read.

LD_RECEIVE_ERROR LIN protocol errors occurred during the transfer; ini-
tialize and redo the transfer.

Reference

The raw and cooked is not differentiated outside the API. A general description of the
transport layer can be found in Transport Layer Specification.

7.4.4 COOKED API

Cooked processing of diagnostic messages manages one complete message at a
time.

7.4.4.1 ld_send_message

Dynamic prototype
void ld_send_message (l_ifc_handle iii,
 l_u16 length,
 l_u8 NAD,
 const l_u8* const data);

Availability
Master and slave nodes.

Description
The call packs the information specified by data and length into one or multiple diag-
nostic frames. If the call is made in a master node application the frames are transmit-
ted to the slave node with the address NAD. If the call is made in a slave node
application the frames are transmitted to the master node with the address NAD. The
parameter NAD is not used in slave nodes.

The value of the SID (or RSID) shall be the first byte in the data area.

Length must be in the range of 1 to 4095 bytes. The length shall also include the SID
(or RSID) value, i.e. message length plus one.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 156

Transport layer
The call is asynchronous, i.e. not suspended until the message has been sent, and
the buffer may not be changed by the application as long as calls to ld_tx_status
returns LD_IN_PROGRESS.

The data is transmitted in suitable frames (master request frame for master nodes and
slave response frame for slave nodes).

If there is a message in progress, the call will return with no action.

Reference

The raw and cooked is not differentiated outside the API. A general description of the
transport layer can be found in Transport Layer Specification.

7.4.4.2 ld_receive_message

Dynamic prototype
void ld_receive_message (l_ifc_handle iii,
 l_u16* const length,
 l_u8* const NAD,
 l_u8* const data);

Availability
Master and slave nodes.

Description
The call prepares the LIN diagnostic module to receive one message and store it in
the buffer pointed to by data. At the call, length shall specify the maximum length
allowed. When the reception has completed, length is changed to the actual length
and NAD to the NAD in the message.

SID (or RSID) will be the first byte in the data area.

Length will be in the range of 1 to 4095 bytes, but never more than the value originally
set in the call. SID (or RSID) is included in the length.

The parameter NAD is not used in slave nodes.

The call is asynchronous, i.e. not suspended until the message has been received,
and the buffer may not be changed by the application as long as calls to ld_rx_status
returns LD_IN_PROGRESS. If the call is made after the message transmission has
commenced on the bus (i.e. the SF or FF is already transmitted), this message will not
be received. Instead the function will wait until next message commence.

The data is received from the succeeding suitable frames (master request frame for
slave nodes and slave response frame for master nodes).
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 157

Transport layer
The application shall monitor the ld_rx_status and shall not call this function until the
status is LD_COMPLETED. Otherwise this function may return inconsistent data in
the parameters.

Reference

The raw and cooked is not differentiated outside the API. A general description of the
transport layer can be found in Transport Layer Specification.

7.4.4.3 ld_tx_status

Dynamic prototype
l_u8 ld_tx_status (l_ifc_handle iii);

Availability
Master and slave nodes.

Description
The call returns the status of the last made call to ld_send_message. The following
values can be returned:

LD_IN_PROGRESS The transmission is not yet completed.

LD_COMPLETED The transmission has completed successfully (and
you can issue a new ld_send_message call). This
value is also returned after initialization of the trans-
port layer.

LD_FAILED The transmission ended in an error. The data was
only partially sent. The transport layer shall be reini-
tialized before processing further messages. To find
out why a transmission has failed, check the status
management function l_ifc_read_status, see
Section 7.2.5.8.

LD_N_AS_TIMEOUT The transmission failed because of a N_As timeout,
see Section 3.2.5.

Reference

The raw and cooked is not differentiated outside the API. A general description of the
transport layer can be found in Transport Layer Specification.

7.4.4.4 ld_rx_status

Dynamic prototype
l_u8 ld_rx_status (l_ifc_handle iii);
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 158

Transport layer
Availability
Master and slave nodes.

Description
The call returns the status of the last made call to ld_receive_message. The following
values can be returned:

LD_IN_PROGRESS The reception is not yet completed.

LD_COMPLETED The reception has completed successfully and all
information (length, NAD, data) is available. (You can
also issue a new ld_receive_message call). This
value is also returned after initialization of the trans-
port layer.

LD_FAILED The reception ended in an error. The data was only
partially received and should not be trusted. Initialize
before processing further transport layer messages.
To find out why a reception has failed, check the sta-
tus management function l_ifc_read_status, see
Section 7.2.5.8.

LD_N_CR_TIMEOUT The reception failed because of a N_Cr timeout, see
Section 3.2.5.

LD_WRONG_SN The reception failed because of an unexpected
sequence number.

Reference

The raw and cooked is not differentiated outside the API. A general description of the
transport layer can be found in Transport Layer Specification.
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 159

Examples
7.5 EXAMPLES
In the following chapters a very simple example is given in order to show how the API
can be used. The examples are not complete, there are functions that are not imple-
mented.

7.5.1 MASTER NODE EXAMPLE

/**
* Description : Example code for using the LIN API in a LIN master node
* The static LIN API is used
*/
#include <lin.h>

#define INT_ENABLE_LEVEL 1

/**
* Procedure : l_sys_irq_restore
* Description : Restores the interrupt mask to the one before the call
* to l_sys_irq_disable was made
* In parameters : previous - the old interrupt level
* Out parameters : None
* Return value : void
*/
void l_sys_irq_restore (l_irqmask previous)
{
 /* Set interrupt level to previous */
} /* l_sys_irq_restore */

/**
* Procedure : l_sys_irq_disable
* Description : Disable the UART interrupts of the controller and
* return the interrupt level to be able to restore it
* later
* In parameters : None
* Out parameters : None
* Return value : The interrupt level before disable
*/
l_irqmask l_sys_irq_disable (void)
{
 l_irqmask interrupt_level;
 /* Store the interrupt level and then disable UART interrupts */
 return interrupt_level;
} /* l_sys_irq_disable */
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 160

Examples
/**
* Interrupt : lin_char_rx_handler
* Description : UART recieve character interrupt handler for the
* interface i1
* In parameters : None
* Out parameters : None
* Return value : void
*/
void __INTERRUPT /* Compiler intrinsic */ lin_char_rx_handler (void)
{
 /* Just call the LIN API provided function to do the actual work */
 l_ifc_rx_i1 ();
} /* lin_char_rx_handler */

/**
* Procedure : main
* Description : Main entry of application
* In parameters : None
* Out parameters : None
* Return value : function will never return
*/
int main (void)
{
 /* Initialize the LIN interface */
 if (l_sys_init ()) {
 /* The init of the LIN software failed - call error routine */
 }

 /* Initialize the interface */
 if (l_ifc_init_i1 ()) {
 /* Initialization of the LIN interface failed - call error routine */
 }

 /* Now is the first time the LIN interrupts can be enabled */
 l_sys_irq_restore (INT_ENABLE_LEVEL);

 /* Set the normal schedule */
 l_sch_set_i1 (Normal_Schedule, 0);

 /* Start the OS */
 start_OS ();

 /* return code */
 return 1;
} /* main */
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 161

Examples
/**
* Procedure : main_application_10ms
* Description : Main 10 ms task of the application
* In parameters : None
* Out parameters : None
* Return value : void */
void main_application_10ms (void)
{
 /* In/output of signals. Call it first in the task to minimize jitter */
 (void) l_sch_tick_i1();

 /* Do some application specific stuff... */

 /* Just a small example of signal reading and writing */
 if (l_flg_tst_RxInternalLightsSwitch ())
 {
 l_flg_clr_RxInternalLightsSwitch ();
 l_u8_wr_InternalLightsRequest (l_u8_rd_InternalLightsSwitch());
 }

} /* main_application_10ms */

7.5.2 SLAVE NODE EXAMPLE

The following example shows how a simple application in a slave is made. Special
focus is made on the node configuration.

/**
* Description : Example code for using the LIN API in a LIN slave node.
* The static LIN API is used (for the core API)
*/
#include "lin.h"

#define INT_ENABLE_LEVEL 1

/**
* Interrupt : lin_char_rx_handler
* Description : UART recieve character interrupt handler for the
* interface i1
* In parameters : None
* Out parameters : None
* Return value : void
*/
void __INTERRUPT /* Compiler intrinsic */ lin_char_rx_handler (void)
{
 /* Just call the LIN API provided function to do the actual work */
 l_ifc_rx_i1 ();
} /* lin_char_rx_handler */
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 162

Examples
/**
* Procedure : main_task
* Description : Main task covering LIN functionalities
* In parameters : None
* Out parameters : None
* Return value : void */
void main_task (void)
{
 /* Do some application specific stuff... */

 /* Just a small example of signal and flag handling */
 if (l_flg_tst_InternalLightsRequest_flag ())
 {
 l_flg_clr_InternalLightsRequest_flag ();
 if (l_u8_rd_InternalLightsSwitch () == 1) {
 /* turn on lights */
 }
 }
} /* main_task */

/**
* Procedure : main
* Description : Main entry of application
* In parameters : None
* Out parameters : None
* Return value : function will never return
*/
int main (void)
{
 l_u8 cfg[20];
 l_u8 len = 0;
 l_bool configuration_ok = 0;
 l_bool stored_configuration = 0;

 /* Initialize the LIN interface */
 if (l_sys_init ()) {
 /* The init of the LIN software failed - call error routine */
 }

 /* Initialize the interface */
 if (l_ifc_init_i1 ()) {
 /* Initialization of the LIN interface failed - call error routine */
 }

 /* Now is the first time the LIN interrupts can be enabled */
 l_sys_irq_restore (INT_ENABLE_LEVEL);
Website: www.lin-subbus.org

LIN API Specification
Revision 2.2A

December 31, 2010; Page 163

Examples
/* Configure the communication */
 configuration_ok = 0;
 stored_configuration = is_configuration_stored ();
 if (stored_configuration) {
 /* there is a stored configuration in NVRAM */
 read_from_NVRAM (cfg, &len);
 /* configure the communication */
 ld_set_configuration (i1, cfg, len);
 configuration_ok = 1;
 } else {
 /* wait for the master to configure me for 5 s*/
 l_u16 configuration_timeout = 1000;
 do {
 if (l_ifc_read_status_i1 () & SAVE_CONFIGURATION) {
 /* The master node is finished with the configuration */
 configuration_ok = 1;
 /* save configuration in NVRAM */
 ld_read_configuration (i1, cfg, len);
 write_to_NVRAM (cfg, len);
 }
 delay_5ms ();
 configuration_timeout--;
 } while (configuration_timeout || !configuration_ok);
 }
 if (!configuration_ok) {
 /* Timeout - no configuration from master, enter limp home */
 }

 while (1) {
 /* Call the only task */
 main_task ();
 }

 /* return code */
 return 1;
} /* main */
Website: www.lin-subbus.org

LIN NCL Spec
Revision 2.2A

December 31, 2010; Page 164
LIN
 Node Capability Language Specification

Revision 2.2A

© LIN Consortium, 2010.

This specification as released by the LIN Consortium is intended for the purpose of
information only and is provided on an "AS IS" basis only and cannot be the basis for
any claims. The LIN Consortium will not be liable for any use of this Specification. The
unauthorized use, e.g. copying, displaying or other use of any content from this docu-
ment is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®. All rights reserved.
All distributions are registered.
Website: www.lin-subbus.org

LIN NCL Spec
Revision 2.2A

December 31, 2010; Page 165

Introduction
8.1 INTRODUCTION
The intention of a node capability language is to be able to describe the possibilities of
a slave node in a standardized, machine readable syntax.

The availability of pre-made off-the-shelf slave nodes is expected to grow in the next
years. If they are all accompanied by a node capability file, it will be possible to gener-
ate both the LIN description file (LDF), see Configuration Language Specification, and
initialization code (configuring the cluster, e.g. reconfigure conflicting frame identifiers)
for the master node.

If the setup and configuration of any cluster is fully automatic, a great step towards
plug-and-play development with LIN will be taken. In other words, it will be just as
easy to use distributed nodes in a cluster as a single CPU node with the physical
devices connected directly to the node.

8.1.1 PLUG AND PLAY WORKFLOW
Figure 8.1 shows the development of a cluster split in three areas; design, debugging
and the LIN physical cluster. This specification focuses on the design phase.

LIN Description

LIN cluster
design Tool

Node Capability Files

File

LIN

LIN cluster
Generator

Bus analyzer and
emulator

Design

LIN cluster Debugging

MasterSlave3Slave2Slave1

Figure 8.1: Development of a LIN cluster.

8.1.1.1 LIN cluster Generation
The core description file of a LIN cluster is the LIN description file, LDF. Based on this
file it is possible to generate communication drivers of all nodes in the cluster, a pro-
cess named LIN cluster generation. All signals and frames of the cluster are declared
in this file.
Website: www.lin-subbus.org

LIN NCL Spec
Revision 2.2A

December 31, 2010; Page 166

Introduction
8.1.1.2 LIN cluster design
The process of creating the LDF file is named LIN cluster design. When you design a
completely new cluster, writing the LDF file (by hand or with computer aid) is an effi-
cient way to define the communication of your cluster.

However, when you have existing slave nodes and want to create a cluster of them
starting from scratch is not that convenient. This is especially true if the defined cluster
contains slave node address conflicts or frame identifier conflicts.

By receiving a node capability file, NCF, with every existing slave node, the LIN cluster
design step is automatic: Just add the NCF files to your project in the LIN cluster
design tool and it produces the LDF file.

If you want to create new slave nodes as well, (Slave3 in Figure 8.1) the process
becomes somewhat more complicated. The steps to perform depend on the LIN clus-
ter design tool being used, which is not part of the LIN specification. A useful tool will
allow for entering of additional information before generating the LDF file. (It is always
possible to write a fictive NCF file for the non-existent slave node and thus, it will be
included.)

It is worth noticing that the generated LDF file reflects the configured network; any
conflicts originally between slave nodes or frames must have been resolved before
activating the cluster traffic.

8.1.1.3 Debugging
Debugging and node emulation is based on the LDF file produced in the LIN cluster
design. Thus, the monitoring will work just as in earlier versions of the LIN specifica-
tion.

Emulation of the master adds the requirement that the cluster must be configured to
be conflict free. Hence, the emulator tool must be able to read reconfiguration data
produced by the LIN cluster design tool.
Website: www.lin-subbus.org

LIN NCL Spec
Revision 2.2A

December 31, 2010; Page 167

Node capability file
definition
8.2 NODE CAPABILITY FILE DEFINITION
node_capability_file ;
<language_version>
[<node_definition>]

8.2.1 GLOBAL DEFINITION
Global definition data defines general properties of the file.

8.2.1.1 Node capability language version number definition
<language_version> ::=
 LIN_language_version = char_string ;

Shall be in the range of "0.01" to "99.99". This specification describes version 2.2.

8.2.2 NODE DEFINITION
<node_definition> ::=
 node <node_name> {
 <general_definition>
 <diagnostic_definition>
 <frame_definition>
 <encoding_definition>
 <status_management>
 (<free_text_definition>)
 }

<node_name> ::= identifier

If a node capability file contains more than one slave node, the node_name shall be
unique within the file. The declared slave nodes shall be seen as classes (templates)
for physical slave node instances.

The properties of a node_definition are defined in the following sections.

8.2.3 GENERAL DEFINITION
<general_definition> ::= 
 general {
 LIN_protocol_version = <protocol_version> ;
 supplier = <supplier_id> ;
 function = <function_id> ;
 variant = <variant_id> ;
 bitrate = <bitrate_definition> ;
 sends_wake_up_signal = “yes” | “no” ; 
 }

The general_definition declare the properties that specify the general compatibility
with the cluster.
Website: www.lin-subbus.org

LIN NCL Spec
Revision 2.2A

December 31, 2010; Page 168

Node capability file
definition
8.2.3.1 LIN protocol version number definition
<protocol_version> ::= char_string ;

This specifies the protocol used by the slave node and it shall be in the range of "0.01"
to "99.99".

8.2.3.2 LIN Product Identification
<supplier_id> ::= integer
<function_id> ::= integer
<variant_id> ::= integer

The supplier_id is assigned to each LIN consortium member as a 16 bit number. The
function_id is a 16 bit number assigned to the product by the supplier to make it
unique. Finally, variant_id is an 8 bit value specifying the variant, see Section 4.2.1.

8.2.3.3 Bit rate
<bitrate_definition> ::=
 automatic (min <bitrate>) (max <bitrate>) |
 select {<bitrate> [, <bitrate>]} |
 <bitrate>

Three kinds of bitrate_definition are possible:

• automatic, the slave node can adopt to any legal bit rate used on the bus. If
the words min and/or max is added any bit rate starting from/up to the
provided bit rate can be used.

• select, the slave node can detect the bit rate if one of the listed bit rates are
used, otherwise it will fail.

• fixed, only one bit rate can be used.

Manufacturers of standardized, off-the-shelf, slave nodes are encouraged to build
automatic slave nodes since this gives the most flexibility to the cluster builder.

<bitrate> ::= real_or_integer kbps

The bit rates are specified in the range of 1 to 20 kbps.

8.2.3.4 Sends wake up signal
This parameter is set to yes if the slave is able to transmit the wake up signal. Other-
wise it is set to no.

8.2.4 DIAGNOSTIC DEFINITION
<diagnostic_definition> ::=
 diagnostic {
 NAD = integer ([, integer]) ; | (integer to integer) ;
 diagnostic_class = integer ;
Website: www.lin-subbus.org

LIN NCL Spec
Revision 2.2A

December 31, 2010; Page 169

Node capability file
definition
 (P2_min = real_or_integer ms ;)
 (ST_min = real_or_integer ms ;)
 (N_As_timeout = real_or_integer ms ;)
 (N_Cr_timeout = real_or_integer ms ;)
 (support_sid { integer ([, integer]) } ;)
 (max_message_length = integer ;)
}

The diagnostic_definition specifies the properties for transport layer and configuration.

The NAD property defines the initial node address; the value shall be set according to
Section 4.2.3.2. Either a list of values or a range can be given. The range is inclusive,
i.e. both values are included in the range. If more than one value is given, the slave
will dynamically select one of the values within the given NAD set based on a physical
property.

The diagnostic class defines the supported class 1, 2 or 3.

The default values of P2_min is 50 ms and ST_min are 0 ms, see Section 5.6.

The default values of N_As_timeout and N_Cr_timeout are 1000 ms, see
Section 3.2.5.

Above timing parameters are only relevant for diagnostic class II and class III slave
nodes.

The max_message_length property applies to the diagnostic transport layer only; it
defines the maximum length of a diagnostic message. Default: 4095.

The support_sid lists all SID values (node configuration, identification and diagnostic
services) that are supported by the slave node. Default: 0xB2, 0xB7. Note that the
supported identifiers for the read by identifier are not given.

8.2.5 FRAME DEFINITION
<frame_definition> ::= 
 frames {
 [<single_frame>]
 }

Frames listed here shall be all unconditional frames and event triggered frames pro-
cessed by the slave node. Event triggered frames means the event triggered frame
header, it will therefore not contain any signals. The diagnostic frames will always be
supported and therefore not listed.

<single_frame> ::=
 <frame_kind> <frame_name> {
 <frame_properties>
 (<signal_definition>)
 }
Website: www.lin-subbus.org

LIN NCL Spec
Revision 2.2A

December 31, 2010; Page 170

Node capability file
definition
<frame_kind> ::= publish | subscribe
<frame_name> ::= identifier

Each frame published or subscribed is declared as defined above. The frame_name is
the symbolic name of the frame. The frame_kind is determined from the slave node
point of view (e.g. a transmitted frame shall be a published frame).

8.2.5.1 Frame properties
<frame_properties> ::=
 length = integer ;
 (min_period = integer ms ;)
 (max_period = integer ms ;)
 (event_triggered_frame = identifier;)

The length is the frame length (1 to 8).

The optional values for min_period and max_period are used to guide the tool in gen-
eration of the schedule table.

The event_triggered_frame refers to a event triggered frame, in case that the
described frame is associated with it.

Several restrictions apply when a frame is also event triggered, see Section 2.3.3.2.

8.2.5.2 Signal definition
<signal_definition> ::=
 signals {
 [<signal_name> { <signal_properties> }]
 }

<signal_name> ::= identifier

All frames (except diagnostic frames) carry signals, which are declared in according to
the signal_definition.

<signal_properties> ::=
 <init_value>
 size = integer ;
 offset = integer ;
 (<encoding_name> ;)

<init_value> ::= <init_value_scalar> | <init_value_array>

<init_value_scalar> ::= init_value = integer

<init_value_array> ::= init_value = {integer ([, integer])}

The init_value specifies the value used for the signal from power on until first set by
the publishing application. The init_value_scalar is used for scalar signals and the
init_value_array is used for byte array signals. The init_value_array is given in big-
endian order.
Website: www.lin-subbus.org

LIN NCL Spec
Revision 2.2A

December 31, 2010; Page 171

Node capability file
definition
The size is the number of bits reserved for the signal and the offset specifies the posi-
tion of the signal in the frame (number of bits in offset from the first bit in the frame).

For a byte array, both size and offset must be multiples of eight.

The only way to describe if a signal with size 8 or 16 is a byte array with one or two
elements or a scalar signal is by analyzing the init_value, i.e. the curly parenthesis are
very important to distinguish between arrays and scalar values.

The encoding_name is a reference to a encoding defined in encoding clausal, defined
below.

8.2.5.3 Signal encoding type definition
The encoding is intended for providing representation and scaling properties of sig-
nals.

<encoding_definition> ::=
 encoding {
 [<encoding_name> {
 [<logical_value> |
 <physical_range> |
 <bcd_value> |
 <ascii_value>]
 }]
 }

<encoding_name> ::= identifier
<logical_value> ::= logical_value, <signal_value> (, <text_info>) ;
<physical_range> ::= physical_value, <min_value>, <max_value>, <scale>,
 <offset> (, <text_info>) ;
<bcd_value> ::= bcd_value ;
<ascii_value> ::= ascii_value ;
<signal_value> ::= integer
<min_value> ::= integer
<max_value> ::= integer
<scale> ::= real_or_integer
<offset> ::= real_or_integer 
<text_info> ::= char_string

The signal_value the min_value and the max_value shall be in range of 0 to 65535.
The max_value shall be greater than or equal to min_value. If the raw value is within
the range defined by the min and max value, the physical value shall be calculated as
in (16).

physical_value = (scale * raw_value) + offset (16)
Website: www.lin-subbus.org

LIN NCL Spec
Revision 2.2A

December 31, 2010; Page 172

Node capability file
definition
8.2.6 STATUS MANAGEMENT
<status_management> ::=
 status_management {
 response_error = identifier ;
 (fault_state_signals = identifier ([, identifier]) ;)
 }

<published_signal> ::= identifier

The status_management section specifies which published signal the master node
shall monitor to determine if the slave node is operating as expected.

The identifiers above refer each to one unique published signal in the signal definition,
see Section 8.2.5.2. See the definition of the response error signal in Section 2.7.3
and the fault state signals in Section 5.3.

8.2.7 FREE TEXT DEFINITION
<free_text_definition> ::=
 free_text {
 char_string
 }

The free_text_definition is used to bring up help text, limitations, etc., in the LIN cluster
design tool, if desired.

Typical information provided in the free text definition is:

• Slave node purpose and physical world interaction, e.g. motor speed, power
consumption etc.

• Deviations from the LIN standard.
Website: www.lin-subbus.org

LIN NCL Spec
Revision 2.2A

December 31, 2010; Page 173

Overview of Syntax
8.3 OVERVIEW OF SYNTAX
The syntax is described using a modified BNF (Bachus-Naur Format), as summarized
in Table 8.1 below.

Table 8.1: BNF syntax used in this document.

Symbol Meaning

::= A name on the left of the ::= is expressed using the syntax on its right

<> Used to mark objects specified later

|
The vertical bar indicates choice. Either the left-hand side or the right hand side of the verti-
cal bar shall appear

Bold The text in bold is reserved - either because it is a reserved word, or mandatory punctuation

[] The text between the square brackets shall appear once or multiple times

() The text between the parenthesis are optional, i.e. shall appear once or zero times

char_string Any character string enclosed in quotes "like this"

identifier
An identifier. Typically used to name objects. Identifiers shall follow the normal C rules for
variable declaration

integer An integer. Integers can be in decimal or hexadecimal (prefixed with 0x) format.

real_or_integer
A real or integer number. A real number is always in decimal and has an embedded decimal
point.

Within files using this syntax, comments are allowed anywhere. The comment syntax
is the same as that for C++ where anything from // to the end of a line and anything
enclosed in /* and */ delimiters shall be ignored.

The reserved text and identifiers are case sensitive.
Website: www.lin-subbus.org

LIN NCL Spec
Revision 2.2A

December 31, 2010; Page 174

Example file
8.4 EXAMPLE FILE
node_capability_file;
LIN_language_version = “2.2”;

node step_motor {
 general {
 LIN_protocol_version = “2.2”;
 supplier = 0x0005; function = 0x0020; variant = 1;
 bitrate = automatic min 10 kbps max 20 kbps;
 sends_wake_up_signal = “yes”;
 }

 diagnostic {
 NAD = 1 to 3;
 diagnostic_class = 2; 
 P2_min = 100 ms; ST_min = 40 ms;
 support_sid { 0xB0, 0xB2, 0xB7 };
 }

 frames {
 publish node_status {
 length = 4; min_period = 10 ms; max_period = 100 ms;
 signals {
 state {size = 8; init_value = 0; offset = 0;}
 fault_state {size = 2; init_value = 0; offset = 9; fault_enc;}
 error_bit {size = 1; init_value = 0; offset = 8;}
 angle {size = 16; init_value = {0x22, 0x11}; offset = 16;}
 }
 }

 subscribe control {
 length = 1; max_period = 100 ms;
 signals {
 command {size = 8; init_value = 0; offset = 0; position;}
 }
 }
 }

 encoding { 
 position {physical_value 0, 199, 1.8, 0, “deg”;}
 fault_enc {logical_value, 0, “no result”;
 logical_value, 1, “failed”;
 logical_value, 2, “passed”;}
 }

 status_management { response_error = error_bit;
 fault_state_signals = fault_state; }

 free_text { “step_motor signal values outside 0 - 199 are ignored” }
}

Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 175
LIN
 Configuration Language Specification

Revision 2.2A

© LIN Consortium, 2010.

This specification as released by the LIN Consortium is intended for the purpose of
information only and is provided on an "AS IS" basis only and cannot be the basis for
any claims. The LIN Consortium will not be liable for any use of this Specification. The
unauthorized use, e.g. copying, displaying or other use of any content from this docu-
ment is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®. All rights reserved.
All distributions are registered.
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 176

Introduction
9.1 INTRODUCTION
The language described in this document is used in order to create a LIN description
file. The LIN description file describes a complete cluster and also contains all infor-
mation necessary to monitor the cluster. This information is sufficient to make a limited
emulation of one or multiple nodes if it/they are not available.

The LIN description file can be one component used in order to write software for an
electronic control unit which shall be part of the cluster. An application program inter-
face has been defined, see Application Program Interface Specification, in order to
have a uniform way to access the cluster from within different application programs.
However, the functional behavior of the application program is not addressed by the
LIN description file.

The syntax of a LIN description file is simple enough to be entered manually, but the
development and use of computer based tools is encouraged. Node capability files, as
described in Node Capability Language Specification, provides one way to (almost)
automatically generate LIN description files. The same specification also gives an
example of a possible workflow in development of a cluster.
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 177

LIN description file
definition
9.2 LIN DESCRIPTION FILE DEFINITION
<LIN_description_file> ::=
 LIN_description_file ;
 <LIN_protocol_version_def>
 <LIN_language_version_def>
 <LIN_speed_def>
 (<Channel_name_def>)
 <Node_def>
 (<Node_composition_def>)
 <Signal_def>
 (<Diag_signal_def>)
 <Frame_def>
 (<Sporadic_frame_def>)
 (<Event_triggered_frame_def>)
 (<Diag_frame_def>)
 <Node_attributes_def>
 <Schedule_table_def>
 (<Signal_groups_def>)
 (<Signal_encoding_type_def>)
 (<Signal_representation_def>)

The overall syntax of a LIN description file shall be as above.

9.2.1 GLOBAL DEFINITION
Global definition data defines general properties of the cluster.

9.2.1.1 LIN protocol version number definition
<LIN_protocol_version_def> ::=
 LIN_protocol_version = char_string ;

Shall be in the range of "0.01" to "99.99".

9.2.1.2 LIN language version number definition
<LIN_language_version_def> ::=
 LIN_language_version = char_string ;

Shall be in the range of "0.01" to "99.99". This specification describes version 2.2.

9.2.1.3 LIN speed definition
<LIN_speed_def> ::=
 LIN_speed = real_or_integer kbps ;

This sets the nominal bit rate for the cluster. It shall be in the range of 1 to 20 kbit/sec-
ond.
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 178

LIN description file
definition
9.2.1.4 Channel postfix name definition
<Channel_name_def> ::= 
 Channel_name = identifier ;

Postfix for all named objects in the LDF. The postfix is mandatory for master nodes
that are connected too more than one cluster. It is used to avoid naming collision if a
node is connected to several clusters (i.e. using several LDFs). If given all named
objects shall add this postfix to its name.

The postfix name will be added with an underscore '_' to the named object.

Example: e.g.: If signal name is "signal1" and Channel_name = "net1" in the LDF, then
generated signal name will be "signal1_net1".

9.2.2 NODE DEFINITION
The node definition sections identify the name of all participating nodes as well as
specifying time base and jitter for the master. The definitions in this section creates a
node identifier set. All identifiers in this set shall be unique.

9.2.2.1 Participating nodes
<node_def> ::=
 Nodes {
 Master: <node_name>, <time_base> ms, <jitter> ms ;
 Slaves: <node_name>([, <node_name>]) ; 
 }

<node_name> ::= identifier

The nodes clause lists the physical nodes participating in the cluster. All node_name
identifiers shall be unique within the node identifier set.

The node_name identifier after the Master reserved word specifies the master node.

<time_base> ::= real_or_integer

The time_base value specifies the used time base in the master node to generate the
maximum allowed frame transfer time. The time base shall be specified in millisec-
onds.

<jitter> ::= real_or_integer

The jitter shall be specified in milliseconds. For more information on time_base and jit-
ter usage see Section 2.4.

9.2.2.2 Node attributes
Node attributes provides all necessary information on the behaviour of a single slave
node.
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 179

LIN description file
definition
<node_attributes_def> ::=
 Node_attributes {
 [<node_name> {
 LIN_protocol = <protocol_version> ;
 configured_NAD = <diag_address> ;
 (initial_NAD = <diag_address> ;)
 <attributes_def> ;
 }]
 }

<node_name> ::= identifier

All node_name identifiers shall exist within the node identifier set and refer to a slave
node.

<protocol_version> ::= char_string

Shall be in the range of "0.01" to "99.99".

<diag_address> ::= integer

The diag_address specifies the diagnostic address for the identified slave node in the
range as defined in Section 4.2.3.2. It shall specify the unique NAD used for the slave
node after resolving any cluster conflicts, i.e. it shall be unique within the cluster.

In case the initial_NAD is not given the configured_NAD is the same as the
initial_NAD.

In case of LIN 1.x the attributes_def contains no attributes.

In case of LIN 2.x, following attributes applies:

<attributes_def> ::=
 product_id = <supplier_id>, <function_id> (, <variant>) ;
 response_error = <signal_name> ;
 (fault_state_signals = <signal_name>([, <signal_name>]) ;)
 (P2_min = real_or_interger ms ;)
 (ST_min = real_or_interger ms ;)
 (N_As_timeout = real_or_integer ms ;)
 (N_Cr_timeout = real_or_integer ms ;)
 <configurable_frames_20_def> | <configurable_frames_21_def>

The product_id_def for LIN 2.x:

<supplier_id> ::= integer
<function_id> ::= integer
<variant> ::= integer

The supplier_id, function_id and variant_id ranges are defined in Section 4.2.1.

The variant ID is optional since it is a property of the slave node and not the cluster. It
is set here for LIN 2.0 slave nodes.
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 180

LIN description file
definition
<signal_name> ::= identifier

All signal_name identifiers for the response error signals shall exist within the signal
identifier set and refer to a one bit standard signal, see Section 9.2.3.1. The response
error signal shall be published by the specified slave node. Refer to status manage-
ment, Section 2.7, for more information.

The fault_state_signals is a property of LIN 2.1 and LIN 2.2 slave nodes, and are used
for diagnostic class I and II, see Section 5.3.

The default values of P2_min is 50 ms and ST_min is 0 ms, see Section 5.6.

The default values of N_As_timeout and N_Cr_timeout are 1000 ms, see
Section 3.2.5. These values are used in LIN 2.1 and LIN2.2 slave nodes.

Configurable frames shall list all frames (unconditional frames, event-triggered frames
and sporadic frames) processed by the slave node. This section applies to LIN 2.x
slave nodes only (not to LIN 1.x).

The configurable_frames_def for LIN 2.0:

<configurable_frames_20_def> ::=
 configurable_frames { 
 [<frame_name> = <message_id> ;]
 }

<message_id> ::= integer

The message_id range is defined in the LIN Diagnostic and Configuration Specifi-
cation of LIN 2.0.

The configurable_frames_def for LIN 2.1 and LIN 2.2:

<configurable_frames_21_def> ::=
 configurable_frames {
 [<frame_name> ;]
 }

The order of the frames are important since the node configuration request assign
frame PID range dependent on the order, see Section 4.2.5.5.

9.2.2.3 Node composition definition
The LDF file is describing the functionality of nodes from communication point of view
and by default each such a logical slave node is a physical (real) slave node as well. It
is possible, however, to express that physical slave nodes are composed of more than
one logical slave nodes. The purpose of this clause is to allow a single master node
software to handle multiple slave node configurations without changes.
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 181

LIN description file
definition
<node_composition_def> ::=
 composite {
 [configuration <configuration_name> {
 [<composite_node> {
 <logical_node> ([, <logical_node>]) ;]
 }]
 }

All composite_node identifiers and logical_node identifiers must be unique within the
slave node identifier set.

<configuration_name> ::= identifier

The configuration_name is used to handle different configurations of the composite
slave nodes. A physical cluster is statically built according to one of the
configuration_names. The used configuration must be set outside the LDF.

<composite_node> ::= identifier

The composite_node groups a number of logical slave nodes into one physical slave
node. The composite_node is used in the list of participating slave nodes,
Section 9.2.2.1.

<logical_node> ::= identifier

The logical slave node shall be listed in the node attributes section. Each logical slave
node will keep its NAD. The master node will communicate to the logical slave node
as if they were separated.

9.2.3 SIGNAL DEFINITION
The signal definition sections identify the name of all signals in the cluster and their
properties. The definitions in this section creates a signal identifier set. All identifiers in
this set shall be unique.

9.2.3.1 Standard signals
<signal_def> ::=
 Signals {
 [<signal_name>: <signal_size>, <init_value>, <published_by> 
 [, <subscribed_by>] ;]
 }

<signal_name> ::= identifier

All signal_name identifiers shall be unique within the signal identifier set.

<signal_size> ::= integer

The signal_size specifies the size of the signal. It shall be in the range 1 to 16 bits for
scalar signals and 8, 16, 24, 32, 40, 48, 56 or 64 for byte array signals.
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 182

LIN description file
definition
<init_value> ::= <init_value_scalar> | <init_value_array>

<init_value_scalar> ::= integer

<init_value_array> ::= {integer ([, integer])}

The init_value specifies the signal value that shall be used by all subscriber nodes
until the frame containing the signal is received. The init_value_scalar is used for sca-
lar signals and the init_value_array is used for byte array signals. The initial_value for
byte arrays shall be arranged in big-endian order (i.e. with the most significant byte
first).

The only way to describe if a signal with size 8 or 16 is a byte array with one or two
elements or a scalar signal is by analyzing the init_value, i.e. the curly parenthesis are
very important to distinguish between arrays and scalar values.

<published_by> ::= identifier
<subscribed_by> ::= identifier

The published_by identifier and the subscribed_by identifier shall all exist in the node
identifier set.

9.2.3.2 Diagnostic signals
<diagnostic_signal_def> ::=
 Diagnostic_signals {
 MasterReqB0: 8, 0 ;
 MasterReqB1: 8, 0 ;
 MasterReqB2: 8, 0 ;
 MasterReqB3: 8, 0 ;
 MasterReqB4: 8, 0 ;
 MasterReqB5: 8, 0 ;
 MasterReqB6: 8, 0 ;
 MasterReqB7: 8, 0 ;
 SlaveRespB0: 8, 0 ;
 SlaveRespB1: 8, 0 ;
 SlaveRespB2: 8, 0 ;
 SlaveRespB3: 8, 0 ;
 SlaveRespB4: 8, 0 ;
 SlaveRespB5: 8, 0 ;
 SlaveRespB6: 8, 0 ;
 SlaveRespB7: 8, 0 ;
 }

Diagnostic signals have a separate section in the LIN description file due to the fact
that the publisher/subscriber information does not apply here.

9.2.3.3 Signal groups
The group definition was a feature of LIN 1.3. Use of signal groups is deprecated and
the following syntactical definition does not affect a LIN 2.x cluster.
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 183

LIN description file
definition
<Signal_groups_def> ::=
 Signal_groups {
 [<signal_group_name>:<group_size> {
 [<signal_name> ,<group_offset> ;] 
 }]
 }

<signal_group_name> ::= identifier
<group_size> ::= integer
<signal_name> ::= identifier
<group_offset> ::= integer

9.2.4 FRAME DEFINITION
The frame definition sections identify the name of all frames in the cluster as well as
their properties. The definitions in this section create a frame identifier set (their sym-
bolic name) and an associated frame ID set (the frame identifier). All members in
these sets shall be unique.

9.2.4.1 Unconditional frames
<frame_def> ::=
 Frames {
 [<frame_name>: <frame_id>, <published_by>, <frame_size> {
 [<signal_name>, <signal_offset> ;]
 }]
 }

<frame_name> ::= identifier

All frame_name identifiers shall be unique within the frame identifier set.

<frame_id> ::= integer

The frame_id specifies the frame identifier number in range 0 to 59. The frame identi-
fier shall be unique for all frames within the frames identifier set.

<published_by> ::= identifier

The published_by identifier shall exist in the node identifier set.

<frame_size> ::= integer

The frame_size specifies the size of the frame in range 1 to 8 bytes.

<signal_name> ::= identifier

The signal_name identifier shall exist in the signal identifier set.

All signals within one frame definition, shall be published by the same node as speci-
fied in the published_by identifier for that frame.

<signal_offset> ::= integer
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 184

LIN description file
definition
The signal_offset value specifies the least-significant bit position of the signal in the
frame. This value is in the range of 0 to (8 * frame_size - 1). The least significant bit of
the signal is transmitted first.

Example
Table 9.1 below shows a ten bit signal packed in a frame with a four byte data field.
The LSB of S is at offset 16 and the MSB is at offset 25. Note that the figure is drawn
as the bytes are transmitted (LSB first).

Table 9.1: Packing of a signal.

Byte 0 Byte 1 Byte 2 Byte 3

S S S S S S S S S S
0 7 8 15 16 23 24 31

Transmitted first Transmitted last

9.2.4.2 Sporadic frames
<sporadic_frame_def> ::=
 Sporadic_frames {
 [<sporadic_frame_name>: <frame_name> ([, <frame_name>]) ;]
 }

<sporadic_frame_name> ::= identifier

All sporadic_frame_name identifiers shall be unique within the frame identifier set.

<frame_name> ::= identifier

All frame_name identifiers shall exist in the frame identifier set and refer to uncondi-
tional frames. In the case that more than one of the declared frames needs to be
transferred, the one first listed shall be chosen.

All frame_name identifiers shall either be unconditional frames published by the mas-
ter node. Furthermore, they shall not be scheduled as unconditional frames directly in
the same schedule table as the sporadic_frame_name.

9.2.4.3 Event triggered frames
<event_triggered_frame_def> ::=
 Event_triggered_frames {
 [<event_trig_frm_name>: 
 <collision_resolving_schedule_table>,
 <frame_id>
 [, <frame_name>] ;]
 }

<event_trig_frm_name> ::= identifier

All event_trig_frm_name identifiers shall be unique within the frame identifier set.

<collision_resolving_schedule_table> ::= identifier
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 185

LIN description file
definition
This refers to a schedule table in the schedule table set. This schedule will be auto-
matically activated after the collision. It shall minimum contain the associated uncondi-
tional frames.

<frame_id> ::= integer

The frame_id specifies the frame ID number in range 0 to 59. The ID shall be unique
for all frames within the frames ID set.

<frame_name> ::= identifier

All frame_name identifiers shall exist in the frame identifier set and refer to uncondi-
tional frames.

Remark
The first byte of the frame carries the protected identifier of the associated frame and,
hence, cannot be used for other purposes.

9.2.4.4 Diagnostic frames
<diag_frame_def> ::=
 Diagnostic_frames {
 MasterReq: 60 {
 MasterReqB0, 0;
 MasterReqB1, 8;
 MasterReqB2, 16;
 MasterReqB3, 24;
 MasterReqB4, 32;
 MasterReqB5, 40;
 MasterReqB6, 48;
 MasterReqB7, 56;
 }
 SlaveResp: 61 {
 SlaveRespB0, 0;
 SlaveRespB1, 8;
 SlaveRespB2, 16;
 SlaveRespB3, 24;
 SlaveRespB4, 32; 
 SlaveRespB5, 40;
 SlaveRespB6, 48;
 SlaveRespB7, 56;
 }
 }

The MasterReq and SlaveResp reserved frame names are identifying the diagnostic
frames (see Section 2.3.3.4) and shall be unique in the frame identifier set.
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 186

LIN description file
definition
9.2.5 SCHEDULE TABLE DEFINITION
The schedule table describes the frames and the timing of the frames transmitted on
the bus. Valid frames in the schedule tables are the frame types defined in
Section 2.3.3 (except the reserved frames) and the node configuration commands
listed below.

<schedule_table_def> ::=
 Schedule_tables {
 [<schedule_table_name> {
 [<command> delay <frame_time> ms ;] 
 }]
 }

<schedule_table_name> ::= identifier

All schedule_table_name identifiers shall be unique within the schedule table identifier
set.

<command> ::=
 <frame_name> |
 MasterReq |
 SlaveResp |
 AssignNAD {<node_name>} |
 ConditionalChangeNAD {<NAD>, <id>, <byte>, <mask>, <inv>, <new_NAD>} |
 DataDump {<node_name>, <D1>, <D2>, <D3>, <D4>, <D5>} |
 SaveConfiguration {<node_name>} |
 AssignFrameIdRange {<node_name>, <frame_index> (, <frame_PID>,
 <frame_PID>, <frame_PID>, <frame_PID>)} |
 FreeFormat {<D1>, <D2>, <D3>, <D4>, <D5>, <D6>, <D7>, <D8>}
 (| AssignFrameId { <node_name>, <frame_name> })

The command specifies what will be done in the frame slot. Providing a frame name
will transfer the specified frame.

<frame_name> ::= identifier

The frame_name identifier shall exist in the frame identifier set. If the frame_name
refers to an event triggered frame or a sporadic frame, the associated unconditional
frames may not be used in the same schedule table.

<node_name> ::= identifier

The node_name refers to one slave node, see Section 9.2.2.2.

MasterReq and SlaveResp are either defined as frames in Section 9.2.4.4 or, if this
clause is left out, automatically defined. The contents of these frames is provided via
the services in the Node configuration and Identification Specification and Diagnostic
specification.

AssignNAD generates a assign NAD request, see Section 4.2.5.1.
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 187

LIN description file
definition
ConditionalChangeNAD generates an conditional change NAD request, see
Section 4.2.5.2.

DataDump generates a data dump request, see Section 4.2.5.3.

SaveConfiguration generates a save configuration request, see Section 4.2.5.4.

AssignFrameIdRange generates an assign frame PID range request with the con-
tents based on the parameters: NAD and the order of the frames (frame_index) are
taken from the node attributes of the node_name.

<frame_index> ::= integer

The frame_index sets the index to the first frame to assign a PID, see Section 9.2.2.2.

<frame_PID> ::= integer

If the optional four frame_PID are given the request will include these values. If
frame_PID are not given the PIDs for the four frames are taken from the frame defini-
tion for frame_name, see Section 9.2.4.

AssignFrameId generates an Assign_frame_id request with a contents based on the
parameters: NAD, supplier_id and message_id are taken from the node attributes of
the node_name, see Section 9.2.2.2 and the protected_id is taken from the frame def-
inition for frame_name, see Section 9.2.4.

All data in this frame is fixed and determined during the processing of the LDF file.
This service is only supported if the master node also support this configuration ser-
vice. This service is optional since it is only defined in the LIN 2.0 specification.

FreeFormat transmits a fixed master request frame with the eight data bytes pro-
vided. This may for instance be used to issue user specific fixed frames.

<frame_time> ::= real_or_integer

The frame_time specifies the duration of the frame slot, see Section 2.4.2. The
frame_time value shall be specified in milliseconds.

The handling and switching of schedule table is controlled by the master application
program, see description in Section 2.4 and the schedule table handling API in
Section 7.2.4.

Example
Figure 9.1 shows a time line that corresponds to the schedule table VL1_ST1. It is
assumed that the time_base (see Section 9.2.2.1) is set to 5 ms.

schedule_tables {
 VL1_ST1 {
 VL1_CEM_Frm1 delay 15 ms;
 VL1_LSM_Frm1 delay 15 ms;
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 188

LIN description file
definition
 VL1_CPM_Frm1 delay 15 ms;
 VL1_CPM_Frm2 delay 20 ms;
 }
}

time

Entry #1 Entry #2 Entry #3 Entry #4 Entry #1
VL1_CEM_Frm1 VL1_LSM_Frm1 VL1_CPM_Frm1 VL1_CPM_Frm2 VL1_CEM_Frm1

...
delay 15 ms delay 15 ms delay 15 ms delay 20ms delay 15 ms

time_base = 5 ms
Jitter TFrame_Maximum inter-frame space

Figure 9.1: Time line for the VL1_ST1 schedule table.

The delay specified for every schedule entry shall be longer than the jitter and the
worst-case frame transfer time.

9.2.6 ADDITIONAL INFORMATION
The following sub-sections provide additional information that does not change the
behavior of the LIN cluster but provide hints for presentation of the traffic by bus
snooping tools. All declarations are optional.

9.2.6.1 Signal encoding type definition
The signal encoding type is intended for providing representation and scaling proper-
ties of signals. Although this information may be used to generate automatically scal-
ing API routines in the node application, those API routines would require quite
powerful nodes. The main purpose of the signal encoding type declarations is in bus
traffic analyzing tools, which can present the recorded traffic in an easily accessed
way.

<signal_encoding_type_def> ::=
 Signal_encoding_types {
 [<signal_encoding_type_name> {
 [<logical_value> |
 <physical_range> |
 <bcd_value> |
 <ascii_value>]
 }]
 }

<signal_encoding_type_name> ::= identifier

All signal_encoding_type_name identifier shall be unique within the signal encoding
type identifier set.
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 189

LIN description file
definition
<logical_value> ::= logical_value, <signal_value> (, <text_info>) ;
<physical_range> ::= physical_value, <min_value>, <max_value>, <scale>,
 <offset> (, <text_info>) ;
<bcd_value> ::= bcd_value ;
<ascii_value> ::= ascii_value ;
<signal_value> ::= integer
<min_value> ::= integer
<max_value> ::= integer
<scale> ::= real_or_integer
<offset> ::= real_or_integer 
<text_info> ::= char_string

The signal_value the min_value and the max_value shall be in range of 0 to 65535.
The max_value shall be greater than or equal to min_value. If the raw value is within
the range defined by the min and max value, the physical value shall be calculated as
in (17).

physical_value = (scale * raw_value) + offset. (17)

Example
The V_battery signal is an eight bit representation that follows the graph in Figure 9.1,
i.e. the resolution is high around 12 V and has three special values for out-of-range
values.

signal_encoding_types {

 power_state {
 logical_value, 0, "off";
 logical_value, 1, "on";
 }

 V_battery {
 logical_value, 0, "under voltage";
 physical_value, 1, 63, 0.0625, 7.0, "Volt";
 physical_value, 64, 191, 0.0104, 11.0, "Volt";
 physical_value, 192, 253, 0.0625, 1.3, "Volt";
 logical_value, 254, "over voltage";
 logical_value, 255, "invalid";
 }
}

Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 190

LIN description file
definition
1311 177

64

255

0

128

192

V

Signal

Figure 9.1: Representation of V_battery.

9.2.6.2 Signal representation definition
The signal representation declaration is used to associate signals with the corre-
sponding signal encoding type.

<signal_representation_def> ::=
 Signal_representation {
 [<signal_encoding_type_name>: <signal_name> ([, <signal_name>]) ;]
 }

<signal_encoding_type_name> ::= identifier

The signal_encoding_type_name identifier shall exist in the signal encoding type iden-
tifier set.

<signal_name> ::= identifier

The signal_name identifier shall exist in the signal identifier set (both scalar and byte
array signals are applicable). Each signal may only be associated with one
signal_encoding_type_name and may not be nested in a signal_group_name.
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 191

Overview of Syntax
9.3 OVERVIEW OF SYNTAX
The syntax is described using a modified BNF (Bachus-Naur Format), as summarized
in Table 9.2 below.

Table 9.2: BNF syntax used in this document.

Symbol Meaning

::= A name on the left of the ::= is expressed using the syntax on its right

<> Used to mark objects specified later

|
The vertical bar indicates choice. Either the left-hand side or the right hand side of the verti-
cal bar shall appear

Bold The text in bold is reserved - either because it is a reserved word, or mandatory punctuation

[] The text between the square brackets shall appear once or multiple times

() The text between the parenthesis are optional, i.e. shall appear once or zero times

char_string Any character string enclosed in quotes "like this"

identifier
An identifier. Typically used to name objects. Identifiers shall follow the normal C rules for
variable declaration

integer An integer. Integers can be in decimal or hexadecimal (prefixed with 0x) format

real_or_integer
A real or integer number. A real number is always in decimal and has an embedded decimal
point.

Within files using this syntax, comments are allowed anywhere. The comment syntax
is the same as that for C++ where anything from // to the end of a line and anything
enclosed in /* and */ delimiters shall be ignored.

The reserved text and identifiers are case sensitive.
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 192

Examples
9.4 EXAMPLES

9.4.1 LIN DESCRIPTION FILE

LIN_description_file;
LIN_protocol_version = "2.2";
LIN_language_version = "2.2";
LIN_speed = 19.2 kbps;
Channel_name = "DB";

Nodes {
 Master: CEM, 5 ms, 0.1 ms;
 Slaves: LSM, RSM;
}

Signals {
 InternalLightsRequest: 2, 0, CEM, LSM, RSM;
 RightIntLightsSwitch: 8, 0, RSM, CEM;
 LeftIntLightsSwitch: 8, 0, LSM, CEM;
 LSMerror: 1, 0, LSM, CEM;
 RSMerror: 1, 0, RSM, CEM;
 IntTest: 2, 0, LSM, CEM;
}

Frames {
 CEM_Frm1: 0x01, CEM, 1 {
 InternalLightsRequest, 0;
 }

 LSM_Frm1: 0x02, LSM, 2 {
 LeftIntLightsSwitch, 8;
 }

 LSM_Frm2: 0x03, LSM, 1 {
 LSMerror, 0;
 IntTest, 1;
 }

 RSM_Frm1: 0x04, RSM, 2 {
 RightIntLightsSwitch, 8;
 }

 RSM_Frm2: 0x05, RSM, 1 {
 RSMerror, 0;
 }
}

Event_triggered_frames {
 Node_Status_Event : Collision_resolver, 0x06, RSM_Frm1, LSM_Frm1;
}

Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 193

Examples
Node_attributes {
 RSM {
 LIN_protocol = "2.0";
 configured_NAD = 0x20;
 product_id = 0x4E4E, 0x4553, 1;
 response_error = RSMerror;
 P2_min = 150 ms;
 ST_min = 50 ms;
 configurable_frames {
 Node_Status_Event=0x000; CEM_Frm1 = 0x0001; RSM_Frm1 = 0x0002;
 RSM_Frm2 = 0x0003;
 }
 }

 LSM {
 LIN_protocol = "2.2";
 configured_NAD = 0x21;
 initial_NAD = 0x01;
 product_id = 0x4A4F, 0x4841;
 response_error = LSMerror;
 fault_state_signals = IntTest;
 P2_min = 150 ms;
 ST_min = 50 ms;
 configurable_frames {
 Node_Status_Event; CEM_Frm1; LSM_Frm1; LSM_Frm2;
 }
 }
}

Schedule_tables {
 Configuration_Schedule {
 AssignNAD {LSM} delay 15 ms;
 AssignFrameIdRange {LSM, 0} delay 15 ms;
 AssignFrameId {RSM, CEM_Frm1} delay 15 ms;
 AssignFrameId {RSM, RSM_Frm1} delay 15 ms;
 AssignFrameId {RSM, RSM_Frm2} delay 15 ms;
 }

 Normal_Schedule {
 CEM_Frm1 delay 15 ms;
 LSM_Frm2 delay 15 ms;
 RSM_Frm2 delay 15 ms;
 Node_Status_Event delay 10 ms;
 }

 MRF_schedule {
 MasterReq delay 10 ms;
 }
Website: www.lin-subbus.org

LIN Config Language Spec
Revision 2.2A

December 31, 2010; Page 194

Examples
 SRF_schedule {
 SlaveResp delay 10 ms;
 }

 Collision_resolver { // Keep timing of other frames if collision
 CEM_Frm1 delay 15 ms;
 LSM_Frm2 delay 15 ms;
 RSM_Frm2 delay 15 ms;
 RSM_Frm1 delay 10 ms; // Poll the RSM node
 CEM_Frm1 delay 15 ms;
 LSM_Frm2 delay 15 ms;
 RSM_Frm2 delay 15 ms;
 LSM_Frm1 delay 10 ms; // Poll the LSM node
 }
}

Signal_encoding_types {
 Dig2Bit {
 logical_value, 0, "off";
 logical_value, 1, "on";
 logical_value, 2, "error";
 logical_value, 3, "void";
 }

 ErrorEncoding {´
 logical_value, 0, "OK";
 logical_value, 1, "error";
 }

 FaultStateEncoding {
 logical_value, 0, "No test result";
 logical_value, 1, "failed";
 logical_value, 2, "passed";
 logical_value, 3, "not used";
 }

 LightEncoding {
 logical_value, 0, "Off";
 physical_value, 1, 254, 1, 100, "lux";
 logical_value, 255, "error";
 }
}

Signal_representation {
 Dig2Bit: InternalLightsRequest;
 ErrorEncoding: RSMerror, LSMerror;
 FaultStateEncoding: IntError;
 LightEncoding: RightIntLightsSwitch, LefttIntLightsSwitch;
}

Website: www.lin-subbus.org

	Specification Package
	Revision history
	Table of contents
	1.1 LIN
	1.1.1 Scope
	1.1.2 Features and possibilities
	1.1.3 Work flow concept
	1.1.4 Node concept
	1.1.5 Concept of operation
	1.1.5.1 Master and slave
	1.1.5.2 Frames
	1.1.5.3 Data transport
	1.1.5.4 Schedule table

	1.1.6 Document overview
	1.1.7 History and background
	1.1.7.1 Compatibility with LIN 1.3
	1.1.7.2 Compatibility with LIN 2.0
	1.1.7.3 Compatibility with LIN 2.1
	1.1.7.4 Changes between LIN 1.3 and LIN 2.0
	1.1.7.5 Changes between LIN 2.0 and LIN 2.1
	1.1.7.6 Changes between LIN 2.1 and LIN 2.2

	1.1.8 References

	1.2 LIN Glossary

	Protocol Specification
	2.1 Introduction
	2.2 Signal Management
	2.2.1 Signal types
	2.2.2 Signal consistency
	2.2.3 Signal packing
	2.2.4 Signal reception and transmission

	2.3 Frame Transfer
	2.3.1 Frame structure
	2.3.1.1 Break field
	2.3.1.2 Sync byte field
	2.3.1.3 Protected identifier field
	2.3.1.4 Data
	2.3.1.5 Checksum

	2.3.2 Frame length
	2.3.3 Frame types
	2.3.3.1 Unconditional frame
	2.3.3.2 Event triggered frame
	2.3.3.3 Sporadic frame
	2.3.3.4 Diagnostic frames
	2.3.3.5 Reserved frames

	2.4 Schedule tables
	2.4.1 Time definitions
	2.4.2 frame Slot
	2.4.3 Schedule table handling

	2.5 Task Behavior Model
	2.5.1 Master task state machine
	2.5.2 Slave task state machine
	2.5.2.1 Break/sync field sequence detector
	2.5.2.2 Frame processor

	2.6 Network Management
	2.6.1 slave communication state diagram
	2.6.2 Wake up
	2.6.3 Go to sleep

	2.7 Status Management
	2.7.1 Concept
	2.7.2 Event triggered frames
	2.7.3 Reporting to the cluster
	2.7.4 Reporting within own node

	2.8 Appendices
	2.8.1 Table of numerical properties
	2.8.2 Table of valid frame identifiers
	2.8.3 Example of checksum calculation
	2.8.4 Syntax and mathematical symbols used in this standard

	Transport Layer Specification
	3.1 Introduction
	3.2 Transport layer
	3.2.1 PDU structure
	3.2.1.1 Overview
	3.2.1.2 NAD
	3.2.1.3 PCI
	3.2.1.4 LEN
	3.2.1.5 SID
	3.2.1.6 D1 to D6

	3.2.2 Communication
	3.2.2.1 Single Frame Transmission
	3.2.2.2 Multiple Frame Transmission

	3.2.3 Error Handling
	3.2.4 Defined requests
	3.2.5 timing constraints

	Node configuration and Identification Specification
	4.1 Introduction
	4.2 Node configuration and identification
	4.2.1 LIN product identification
	4.2.1.1 Wildcards

	4.2.2 Slave Node model
	4.2.2.1 Initial NAD

	4.2.3 PDU structure
	4.2.3.1 Overview
	4.2.3.2 NAD
	4.2.3.3 PCI
	4.2.3.4 SID
	4.2.3.5 RSID
	4.2.3.6 D1 to D5

	4.2.4 Node configuration and identification
	4.2.5 Node configuration services
	4.2.5.1 Assign NAD
	4.2.5.2 Conditional change NAD
	4.2.5.3 Data dump
	4.2.5.4 Save Configuration
	4.2.5.5 Assign frame ID range

	4.2.6 Identification
	4.2.6.1 Read by identifier

	Diagnostic specification
	5.1 Introduction
	5.1.1 using the transport layer
	5.1.2 LIN master
	5.1.3 slave nodes

	5.2 Diagnostic classes
	5.2.1 Diagnostic Class I
	5.2.1.1 Transport protocol
	5.2.1.2 Diagnostic services

	5.2.2 Diagnostic Class II
	5.2.2.1 Transport protocol
	5.2.2.2 Diagnostic services

	5.2.3 Diagnostic Class III
	5.2.3.1 Addressing
	5.2.3.2 Transport protocol
	5.2.3.3 Diagnostic services

	5.2.4 Summary of slave node classes
	5.2.5 Master node requirements
	5.2.5.1 Transport protocol
	5.2.5.2 Fault management, sensor reading, I/O control

	5.2.6 User defined diagnostics

	5.3 Requirements for Signal based Diagnostics
	5.4 Transport Protocol handling in LIN- master
	5.4.1 Diagnostic master request schedule
	5.4.2 Diagnostic slave response schedule
	5.4.3 Diagnostic schedule execution
	5.4.3.1 Diagnostics Interleaved Mode
	5.4.3.2 Diagnostics Only Mode

	5.4.4 Transmission handler requirements
	5.4.4.1 Master node transmission handler

	5.5 Slave node transmission handler
	5.6 Slave diagnostic timing requirements

	Physical Layer Specification
	6.1 Introduction
	6.2 Physical Layer Compatibility
	6.3 Bit rate Tolerance
	6.4 Timing Requirements
	6.4.1 Bit Timing Requirements
	6.4.2 Synchronization Procedure
	6.4.3 Bit Sample Timing

	6.5 Line Driver/Receiver
	6.5.1 General Configuration
	6.5.2 Definition of Supply Voltages for the Physical Interface
	6.5.3 Signal Specification
	6.5.4 Electrical DC parameters
	6.5.4.1 Electrical AC Parameters

	6.5.5 Line Characteristics
	6.5.6 Performance in non-operation supply voltage range
	6.5.7 Performance during fault modes
	6.5.7.1 Loss of supply voltage connection or ground connection
	6.5.7.2 Bus wiring short to battery or ground

	6.5.8 ESD/EMI compliance

	Application Program Interface Specification
	7.1 Introduction
	7.1.0.1 LIN cluster generation
	7.1.1 Concept of operation
	7.1.1.1 LIN core API
	7.1.1.2 LIN node configuration and identification API
	7.1.1.3 LIN transport layer API

	7.2 Core API
	7.2.1 Driver and cluster management
	7.2.1.1 l_sys_init

	7.2.2 Signal interaction
	7.2.2.1 Signal types
	7.2.2.2 Scalar signal read
	7.2.2.3 Scalar signal write
	7.2.2.4 Byte array read
	7.2.2.5 Byte array write

	7.2.3 Notification
	7.2.3.1 l_flg_tst
	7.2.3.2 l_flg_clr

	7.2.4 Schedule management
	7.2.4.1 l_sch_tick
	7.2.4.2 l_sch_set

	7.2.5 Interface management
	7.2.5.1 l_ifc_init
	7.2.5.2 l_ifc_goto_sleep
	7.2.5.3 l_ifc_wake_up
	7.2.5.4 l_ifc_ioctl
	7.2.5.5 l_ifc_rx
	7.2.5.6 l_ifc_tx
	7.2.5.7 l_ifc_aux
	7.2.5.8 l_ifc_read_status

	7.2.6 User provided call-outs
	7.2.6.1 l_sys_irq_disable
	7.2.6.2 l_sys_irq_restore

	7.3 Node configuration and identification
	7.3.1 Node configuration
	7.3.1.1 ld_is_ready
	7.3.1.2 ld_check_response
	7.3.1.3 ld_assign_frame_id_range
	7.3.1.4 ld_assign_NAD
	7.3.1.5 ld_save_configuration
	7.3.1.6 ld_read_configuration
	7.3.1.7 ld_set_configuration
	7.3.2 ld_conditional_change_NAD

	7.3.3 Identification
	7.3.3.1 ld_read_by_id
	7.3.3.2 ld_read_by_id_callout

	7.4 Transport layer
	7.4.1 Raw and Cooked API
	7.4.2 Initialization
	7.4.3 Raw API
	7.4.3.1 ld_put_raw
	7.4.3.2 ld_get_raw
	7.4.3.3 ld_raw_tx_status
	7.4.3.4 ld_raw_rx_status

	7.4.4 Cooked API
	7.4.4.1 ld_send_message
	7.4.4.2 ld_receive_message
	7.4.4.3 ld_tx_status
	7.4.4.4 ld_rx_status

	7.5 Examples
	7.5.1 Master node example
	7.5.2 Slave node example

	Node Capability Language Specification
	8.1 Introduction
	8.1.1 Plug and play workflow
	8.1.1.1 LIN cluster Generation
	8.1.1.2 LIN cluster design
	8.1.1.3 Debugging

	8.2 Node capability file definition
	8.2.1 Global definition
	8.2.1.1 Node capability language version number definition

	8.2.2 Node definition
	8.2.3 General definition
	8.2.3.1 LIN protocol version number definition
	8.2.3.2 LIN Product Identification
	8.2.3.3 Bit rate
	8.2.3.4 Sends wake up signal

	8.2.4 Diagnostic definition
	8.2.5 Frame definition
	8.2.5.1 Frame properties
	8.2.5.2 Signal definition
	8.2.5.3 Signal encoding type definition

	8.2.6 Status management
	8.2.7 Free text definition

	8.3 Overview of Syntax
	8.4 Example file

	Configuration Language Specification
	9.1 Introduction
	9.2 LIN description file definition
	9.2.1 Global definition
	9.2.1.1 LIN protocol version number definition
	9.2.1.2 LIN language version number definition
	9.2.1.3 LIN speed definition
	9.2.1.4 Channel postfix name definition

	9.2.2 Node definition
	9.2.2.1 Participating nodes
	9.2.2.2 Node attributes
	9.2.2.3 Node composition definition

	9.2.3 Signal definition
	9.2.3.1 Standard signals
	9.2.3.2 Diagnostic signals
	9.2.3.3 Signal groups

	9.2.4 Frame definition
	9.2.4.1 Unconditional frames
	9.2.4.2 Sporadic frames
	9.2.4.3 Event triggered frames
	9.2.4.4 Diagnostic frames

	9.2.5 Schedule table definition
	9.2.6 Additional information
	9.2.6.1 Signal encoding type definition
	9.2.6.2 Signal representation definition

	9.3 Overview of Syntax
	9.4 Examples
	9.4.1 LIN description file

